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ABSTRACT

We consider a block fading frequency selective multi-input multi-
output (MIMO) channel in additive white Gaussian noise (AWGN).
The channel input is a training vector superimposed on a linearly
precoded vector of Gaussian symbols. This form of precoding is
referred to as affine precoding. We derive the Cramer-Rao bound
(CRB) under two circumstances: the random parameter vector to
be estimated contains (i) only fading channel coefficients, (ii) un-
known data symbols as well as the channel coefficients. While
case (i) corresponds to the decoding schemes in which the chan-
nel is estimated first and the channel measurement is utilized to re-
cover the data symbols, case (ii) corresponds to methods in which
channel and symbol estimation is performed jointly. The interest-
ing outcome of our investigation is that minimizing trace of the
channel CRB for cases (i) and (ii) under a total transmit power
constraint leads to different affine precoder design guidelines.

1. INTRODUCTION

One of the greatest challenges in wireless communications is chan-
nel estimation. To acquire the channel state information (CSI)
without ambiguity training is required. Two major classes of train-
ing design are (i) preamble based training, in which a training
sequence is included at the beginning of data burst; (ii) Pilot Sym-
bol Assisted Modulation (PSAM) technique [1] in which training
symbols are inserted in the data stream and are separated from the
information symbols either in frequency (pilot tones) or in time
(time division multiplexed training). While the preamble based
and PSAM reduce the receiver complexity by decoupling the sym-
bol detection and channel estimation, their optimality has not been
established.

The potential benefits of superimposed training technique, mod-
elling training as a known sequence added to the unknown data
sequence at the transmitter, is utilized in [2] for the purpose of
channel estimation. By construction, there is no increase in the
bandwidth. Affine precoding scheme [3] enjoys the benefits of
both linear precoding [4] and training sequence. It can be viewed
as a general framework in which PSAM with pilot tones or super-
imposed training sequences can be treated as special cases.

Although the literature devoted to optimal preamble and PSAM
design is extensive, there are still not unique guidelines for the de-
sign, due to the modelling assumptions used that make the results
often difficult to generalize or compare. In this work we utilize
affine precoding as the transmission strategy and CRB as the opti-
mality criterion and we study the relationship between the optimal
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affine precoders and the assumptions made on the receiver struc-
ture (e.g., decoupled vs. joint channel and symbol estimation) and
the constraints on the training design (e.g., preamble, PSAM or
superimposed training).

Notation: Boldface upper and lower cases denote matrices
and column vectors respectively. The tr(�) is trace of �. The
column vector formed by stacking vertically the columns of �
is � = vec(�). The probability density function is presented
as p(.). diag(�) is a diagonal matrix whose diagonal elements
are the components of �. Complex conjugate, Hermitian, trans-
pose, pseudoinverse and expectation operations are represented by
(.)∗, (.)H , (.)T , (.)†, E{.} respectively.

2. SYSTEM MODEL

The system considered has K transmit and R receive antennas. We
assume a block fading model where P is the coherence time of the
channel, i.e., the equivalent discrete-time impulse response of the
channel does not change during the transmission of P snapshots.
In our setup The channel has finite memory L. The information
sequence �[n] is parsed into blocks of size N , namely �i. Each
block is precoded by a tall KP × N precoding matrix � . An
KP ×1 training vector �, which is known to the receiver, is added
to the precoding block ��i to obtain the transmitted data block
�i = ��i + �. The PK × 1 vector �i is obtained by stacking
P transmit snapshots �i := vec([�[iP ], . . . ,�[iP + P − 1]]),
where �[iP + p] is the K × 1 (coded) symbol vector, emitted
by the K transmit antennas. For the mapping from �i to �i to
be invertible, we require � to be full column rank. Stacking M =
P −L received snapshots in an MR×1 vector �i := vec([�[iP +
L], . . . ,�[iP +P −1]]), in which we eliminated the first L vectors
to cancel the inter-block interference (IBI), we obtain �i = ��i,
where � is an RM × KP block Toeplitz matrix:

� =

�
�����

H[L] · · · H[0] 0 . . . 0

0 H[L] · · · H[0]
. . .

...
...

. . .
. . .

. . .
. . . 0

0 · · · 0 H[L] · · · H[0]

�
�����

(1)

{H[l]}r,k is the l-th sample of the impulse response characterizing
the channel between the k-th transmitter and the r-th receiver. We
require N ≤ rank(�) ≤ min(KP, RM). The received signal
�i = �i + 	i where 	i ∼ N (0, σ2

nn
RM). Furthermore, we
assume that �i ∼ N (0, σ2

ss
N). and 	i and �i are uncorrelated.
Combining all we obtain:

�i = ���i +��+ 	i (2)

IV - 4090-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡



Without IBI, we assume that the resulting channel estimator oper-
ates on a block-by-block basis and we omit the block index i. We
let � ∈ CKR(L+1) be the vector containing the channel param-
eters to be estimated � := vec

�
[H[0], . . . , H[L]]T

�
. Assuming

that we deal with a rich scattering fading environment, we have
� ∼ N (0, σhh�). To simplify the CRB derivation we rewrite
�� explicitly as a function of �. To this end we introduce a map-
ping Φ : � → X such that �� = X� where X := Φ(�) is
defined as:

X :=

�
����
�R ⊗� (1,:)

�R ⊗� (2,:)

...
�R ⊗� (M,:)

�
���� (3)

in which� (i,:) is the i-th row of the M×K(L+1) block Toeplitz
structure matrix� :

� :=

�
����

�T [L] · · · �T [0]
�T [L + 1] · · · �T [1]

...
. . .

...
�T [P − 1] · · · �T [M − 1]

�
���� (4)

3. DECOUPLED SYMBOL AND CHANNEL
ESTIMATION

3.1. CRB Expression

Let � be the complex random parameter vector we wish to esti-
mate. The CRB is the inverse of the complex Fisher information
matrix (FIM) � :

� := E

�
∂ ln p(�,�)

∂�∗

	
∂ ln p(�,�)

∂�∗


H
�

(5)

where the expectation is taken over p(�,�). (proofs are omitted
due to lack of space [5]).

Lemma 1 � is given by � = E{� c} + σ−2
hh � where � c is the

FIM for deterministic channel estimation:

� c = TH
�

−1
z T + σ4

ss�
H(�T ⊗�−1

z )� (6)

in which [c.f.(3)-(4)]:

T = Φ(�)

�z = σ2
ss���

H
�

H + σ2
nn�RM

� = ��
H
�

H
�

−1
z ���

H

� =
�
vec(	1), . . . , vec(	(L+1)RK)


	i =

∂�

∂hi
i = 1, . . . , (L + 1)RK

Interestingly, � c is decomposed into two terms, where the
first term TH�−1

z T depends on both � and � through�−1
z and T

respectively, whereas the second term �H(�T ⊗�−1
z )� depends

on � but not on �.

3.2. Affine Precoder Design Guidlines: CRB Criterion

We look for pairs (� , �) which provide us a lower tr(�−1) than
the others, independent of the underlying FIR MIMO channel. Our
interesting observation is that � c has higher eigenvalues if � and

� satisfy a form of orthogonality, in the sense stated in the lemma
2. Since this constraint is independent of the channel, it also in-
creases the eigenvalues of � c averaged over the channel and con-
sequently the eigenvalues for � .

Lemma 2 The pair (� , �) which satisfy the following orthogonal-
ity constraint provides a lower tr(�−1):

�
H
� i = 0 i = 1, 2, . . . , N (7)

where � and � i are defined according to (3)-(4) using � and 
 i

(the i-th column of � ).

The orthogonality constraint in (7) is analogous to the affine
precoding design constraints in [6]. The authors found that the
class of (� , �) which admit a form of orthogonality constraint sim-
ilar to (7) converts the nonlinear estimation problem in model (2)
to two low complexity, albeit suboptimal, linear estimation prob-
lems. Although, we did not enforce symbol detection and channel
estimation to be decoupled a priori, using tr(CRB) as the opti-
mality design criteria led us to a similar orthogonality constraint.

We wish to characterize the pairs (� , �) which satisfy (7).
When M � L for any pair (� , �) we can introduce (�CP , �CP )
(where�CP and �CP have the cyclic prefix (CP)) such that ||�CP

− � || � 1 and ||�CP − �|| � 1. Hence, we select our gen-
eral design such that the matrix � and the vector � incorporate
CP. To this end, we define � := Ψ� , � := Ψ� where Ψ :=
[0KL×K(M−L) �KL; �KM ] is the KP ×KM CP-inducing ma-
trix. Under the CP assumption, � and� is will be block circulant
matrices and can be diagonalized using the fast Fourier transform
(FFT) matrix.

3.3. Design of Affine Precoding With CP

Let W := exp(j2π/M) and � be the M × M FFT matrix
with [� ]mn = M−1/2W−(m−1)(n−1). We can express � as
� = �H∆t(�0:L ⊗ IK), where �0:L denotes the first L + 1
columns of� , ∆t is an M ×MK block diagonal matrix defined
as ∆t := diag[�̃

T
(1), �̃

T
(W ), · · · , �̃

T
(W M−1)] and �̃(z) :=�M−1

m=0 �[m]z−m is the Z transform of �. Similarly, we can es-
tablish the FFT-based diagonalization of � i and define 
̃ i(z) :=�M−1

m=0 
 i[m]z−m.

Lemma 3 A sufficient condition for (7) to be satisfied is that (� , �)
are selected from the family:

� =
1√
M

(�H ⊗ �K)�̃ � =
1√
M

(�H ⊗ �K)�̃ (8)

where:

�̃:=

�
��

�̃(1)
...

�̃(W M−1)

�
�� �̃:=

�
��


̃1(1) . . . 
̃N(1)
...

. . .
...


̃1(W
M−1) . . . 
̃N(W M−1)

�
��

(9)

where �̃ is a full column rank matrix and �̃(W m)
̃
H

i (W m) = 0
for m = 0, 1, · · · , M − 1 and i = 1, . . . , N .
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4. JOINT CHANNEL AND SYMBOL ESTIMATION

4.1. CRB Expression

Let � := [�H �H ]H be the (N + (L + 1)RK) × 1 complex
random parameter vector we desire to estimate. The FIM � is
defined as:

� := E

�
∂ ln p(�,�)

∂�∗

�
∂ ln p(�,�)

∂�∗

�H
�

:=

�
� 1,1 � 1,2

�
H
1,2 � 2,2

�
(10)

where the expectation is taken over p(�,�).

Lemma 4 � is given by its block partitions:

� 1,1 =

�
σhh

σnn

�2

�
��

tr(FH
1 F1) · · · tr(FH

1 FN)
...

. . .
...

tr(FH
N F1) · · · tr(FH

N FN)

	

�+ σ−2

ss �N

� 2,2 = σ−2
nn

�
σ2

ss

N
i=1

FH
i Fi + THT

�
+ σ−2

hh �RR(L+1)

� 1,2 = 0 (11)

where [c.f.(3)-(4)] T := Φ(�) and Fi := Φ(� i), in which � i is
the i-th column of � . The block inversion formula implies that the
symbol and the channel CRBs are � 1,1

−1
and � 2,2

−1
respec-

tively.

The structure of � 2,2 reveals the fact that the channel CRB
does not distinguish the precoder � from the training �. This is
in contrast to what we observed in Section 3.2, where minimizing
tr(�−1) requires a special form of orthogonality between � and
�. In fact, let � := [σ2

ss� �] be the extended precoder whose i-th
column is denoted as 	i. We can rewrite � 2,2 as:

� 2,2 =
1

σ2
nn

�R ⊗
N+1
i=1

�
H
i �i + σ−2

hh � (12)

where �i is defined according to (3)-(4) and Gi := Φ(	i). On the
other hand, the symbol CRB is independent of �.

4.2. Affine Precoder Design Guidelines: CRB Criterion

We search for a family of affine precoders (� , �) which mini-

mizes tr(� 1,1
−1

) and tr(� 2,2
−1

) [c.f. (11)] simultaneously.
Schwartz’s inequality states that for any positive definite matrix

 we have 
−1

ii ≥ 1


ii
in which equality holds for diagonal 
.

Here, tr(� 2,2
−1

) has the following lower bound:

tr(� 2,2
−1

) ≥
RK(L+1)

m=1

1

σ−2
hh + σ−2

nn

�
�R ⊗�N+1

i=1 �
H
i �i

�
mm

(13)
where the equality holds if and only if

�N+1
i=1 �

H
i �i = α�K(L+1)

for some nonzero constant α. A simple design for �i’s such that�N+1
i=1 �

H
i �i = α�K(L+1) is �H

i �i = |gi|2�K(L+1) for some
|gi| and i = 1, . . . , N + 1. This is feasible only and only if �i’s

are tall and full column rank. For �i to be tall, we require M ≥
K(L + 1). We start with the following simple design:

	i = �j ⊗ 	i j = L + 1, · · · , M i = 1, . . . , N + 1 (14)

where �j is an P ×1 canonical vector and 	i is an arbitrary K×1
vector. To have at least N distinct canonical vector correspond-
ing to the first N linearly independent columns of � (i.e., the
columns of F ) we require M − L ≥ N (minimum redundancy
corresponds to M =L + N ). Whereas 	N+1 (the training vector
�) can be identical to any other columns of the precoder � . We
assume that total transmitted power is limited,i.e., P = ||�||2 =
σ2

sstr(��
H) + ||�||2 which implies

�N+1
i=1 |gi|2 = P . Under

(14) we obtain:

N+1
i=1

�
H
i �i = �(L+1) ⊗

N+1
i=1

	i
∗
	i

T (15)

hence
�N+1

i=1 �
H
i �i =α�K(L+1) if and only if

�N+1
i=1 	i

∗	i
T =

α�K . For the case where κ := (N + 1)/K is an integer, a simple
design can be accomplished by letting 	i to be:

	i = |gi|�k k = 1, · · · , K (16)

and divide the N + 1 	is vectors into K groups, such that each
group contains κ vectors and the summation of |gi|2 for each group
adds up to α = P/K.

Lemma 5 Under the design in (14) combined with the power con-
straint we obtain:

tr(� 2,2
−1

) =
R(L + 1)

σ2
hh + σ−2

nnP
(17)

tr(� 1,1
−1

) =
σ2

ssσ
2
nn

σ2
hh

N
i=1

1

σ2
ssR(L + 1)|gi|2 + 1

(18)

Interestingly, tr(� 2,2
−1

) does not depend on a specific power
distribution between the symbols and the training, but on the total
transmitted power P . Whereas tr(� 1,1

−1
) is minimized if we

distribute all the power only between the data symbols, without
increasing tr(� 2,2

−1
). In other words, we can set |gN+1| =

0 and modify κ to N/K, while we maintain the minimum of

tr(� 2,2
−1

). This observation indicates that not only there is no
need of having specific orthogonality between symbols and train-
ing, but also training is absorbing the power that could have been
used to estimate the symbols, without any improvement in channel
estimate performance.

5. NUMERICAL RESULTS

We set K = 2, R = 2, L = 3, σ2
ss = 1 σ2

hh = 1/(L +
1). The simulation results are averaged over 100 sets of indepen-
dent Rayleigh fading channels. Without loss of generality, we as-
sume that P = 1 and therefore the signal-to-noise ratio (SNR) is
SNR := −10log10σ

2
nn. We define ζ := ||�||2/P as the training

power fraction. For each SNR, � and � are scaled such that the
power constraint is satisfied. We designed three pairs of (� , �)
namely (i),(ii), and (iii) which are the optimal designs for the
first, the second, and both CRB expression respectively:
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Fig. 1. tr(CRB1) and tr(CRB2) evaluated for design (iii)

• design (i): We set M = 16, N = 8. To satisfy the orthogo-
nality constraint in (7) we load � and � on non-overlapping
subcarriers. In particular, we choose �̃(W m) 
= 0 for m ∈
{0, 2, 4, 6, 8, 10, 12, 14}, �̃(W m) = �1 for m = 0, 4, 8, 12

and �̃(W m) = �2 for m = 2, 6, 10, 14. �̃ = 0 except for
�̃1(1) = �̃2(W

3) = �̃3(W
5) = �̃4(W

7) = �̃5(W
9) =

�̃6(W
11) = �̃7(W

13) = �̃8(W
15) = �1.

• design (ii): We set M = 10, N = 7. � = [σ2
ss� �] is

designed along the guidelines provided in (14) and (16), in
which |gi| =

�
1/8 for i = 1, 2, 3, 4, |gi| =

�
(ζ − 0.5)/3

i = 5, 6, 7, and |g8| =
√

ζ where ζ < 0.5.

• design (iii): We set M = 24, N = 4. We choose �̃(W m) 
=
0 for m ∈ {0, 3, 6, 9, 12, 15, 18, 21}, �̃(W m) = �1 for
m ∈ {0, 6, 12, 18} and �̃(W m) = �2 for m ∈ {3, 9, 15, 21}.
We choose �̃ i(W

m) 
= 0 i = 1, 2 for m ∈ {1, 4, 7, 10, 13,

16, 19, 22}, �̃1(W
m) = �1 and �̃2(W

m) = �2 for m ∈
{1, 7, 13, 19}, whereas �̃1(W

m) = �2 and �̃2(W
m) =

�1for m ∈ {4, 10, 16, 22}. We choose �̃ i(W
m) 
= 0 i =

3, 4 for m ∈ {2, 5, 8, 11, 14, 17, 20, 23}, �̃3(W
m) = �1

and �̃4(W
m) = �2 for m ∈ {2, 8, 14, 20}, whereas �̃3(W

m)

= �2 and �̃4(W
m) = �1for m ∈ {5, 11, 17, 23}.

Fig. 1, compares trace of the channel CRB in dB, i.e., tr(CRB1)
and tr(CRB2) for designs (i), (ii), while Fig.2 illustrates
tr(CRB1) and tr(CRB2) for design (iii) as a function of SNR
at ζ = 0.1 and ζ = 0.4. The simulation result confirm the fact
that tr(CRB2) for its optimal design does not depend on ζ. Fur-
thermore, in all figures tr(CRB2) is lower than tr(CRB1). This
is reasonable because CRB1 considers the symbols as nuisance,
while CRB2 includes them in the unknown parameter vector.

6. CONCLUSION

In summary, we showed that different assumptions on the receiver
structure may lead us to different designs for the affine precoders.
In particular, we showed that for receivers which decouples chan-
nel and symbol estimation, a special form of orthogonality be-
tween � and � is required to lower down tr(CRB). Whereas for
receivers which performs joint channel and symbol estimation, no
such a restrict is required. Furthermore, we found that in the latter
case, for the optimal design, trace of the channel CRB does not
depend on the training power, but depends on the total transmitted

0 5 10 15 20 25 30
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−20
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−16

−14

−12

−10

−8

−6

SNR (dB)

optimal design for CRB1

CRB1 ζ=0.1
CRB1 ζ=0.4
CRB2 ζ=0.1
CRB2 ζ=0.4

0 5 10 15 20 25 30
−30

−25

−20

−15

−10

−5
optimal design for CRB2

SNR (dB)

CRB1 ζ=0.1
CRB1 ζ=0.4
CRB2 ζ=0.1
CRB2 ζ=0.4

Fig. 2. tr(CRB1) and tr(CRB2) evaluated for design (i) (top)
and (ii) (bottom)

power; whereas trace of the symbol CRB depends on the sym-
bol power. This indicates that the training is absorbing the power
that could have been used to estimate the symbols, without any
improvement in channel estimate performance.
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