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ABSTRACT

In this contribution we derive a union bound of the Bit Er-
ror Ratio (BER) in wireless Multiple Input Multiple Output
(MIMO) data transmission systems using Maximum Likeli-
hood (ML) receivers. A novel channel model is used to take
into account channel correlation. Relying on the Euclidean
distance between different transmit signals, we show that the
error performance is governed by a few so-called Error Types
(ETs). Simulation results are shown for a 4x4 MIMO system
with BPSK modulation and for a 2x2 MIMO system with
16QAM modulation for several channel correlations. Our
union bound becomes tight for low BERs for all MIMO sys-
tems under investigation.

1. INTRODUCTION

Recent research has shown that wireless Multiple Input Mul-
tiple Output (MIMO) systems offer very high capacity [1].
To exploit this increased capacity several approaches are un-
der investigation in these days. One possibility to achieve
high data rate is uncoded data transmission using high order
modulation formats (MQAM). To keep the Bit Error Ratio
(BER) within reasonably low values, Maximum Likelihood
(ML) receivers, which are the optimal receivers, are used.
Performance evaluation of such systems is mostly done by
simulation, although the computational effort is extremely
high. For this reason it is very important to find perfor-
mance bounds. One possibility of approximating the BER
performance of such systems is to use a union bound. Such
a bound has already been derived by M. Kiessling in [2]. In
this paper the so-called Kronecker channel model [3] is used
to model a correlated MIMO channel. However, the Kro-
necker model has some deficiencies [4] and therefore we use
a novel channel model recently presented in [5]. Moreover,
our calculations are based on so-called ETs that govern the
overall error performance. In this way, the BER calculations
can be based on a few ETs and thus the derivation becomes
more obvious.

The rest of the paper is organized as follows. In Sec. 2
the novel channel model is explained. The union bounds of
the BER based on the above mentioned ETs are calculated
in Sec. 3 for uncorrelated and correlated MIMO channels.
In Sec. 4 the union bounds and simulation results for a 4x4
MIMO system with BPSK modulation and for a 2x2 MIMO
system with 16QQAM modulation for several channel correla-
tions are presented. A summary and conclusions close the

paper.
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2. CHANNEL MODEL

In the following sections, two different approaches are used
to model the MIMO channel: the well known i.i.d. chan-
nel model and a novel correlation model*. Our transmission
system can be modeled as:

y=Hc+n, (1)

where y is the receive signal vector, H is the channel matrix,
c is the transmit signal vector and n is the additive noise
vector.

2.1. Uncorrelated Channels

Uncorrelated MIMO channels are modeled by a channel ma-
trix H with ng X nr independent complex Gaussian dis-
tributed random variables with zero mean and unit variance:

H = NZ""(0,1), (2)
where nt and ng denote the number of transmit and receive
antennas.

2.2. Correlated Channels

Correlated channels are modeled in this paper by the W-
model, which has been presented in [5]. This model is a gen-
eralization of the well known Kronecker model. Note that the
Kronecker model is a special case of the W-model [5]. In the
Kronecker model it is assumed, that the transmit correlation
and the receive correlation are independent from each other.
This assumption is quite often not valid. For the W-model
it is only assumed that the Eigenbasis Urx and Ugrx of the
correlation matrices Rrx and Rrx are fixed. The Eigen-
basis can be interpreted as the influence of the scatterers
around the transmitter and the receiver. The power cou-
pling from the transmitter Eigenbasis Urx to the receiver
Eigenbasis Ugrx is modeled by an additional matrix €. Due
to this coupling, transmit and receive correlation are not in-
dependent, as it is assumed in the Kronecker model. More
details on this model are provided in [5]. The channel model
can be written as:

H = Ugx (Q O] G) Urx , (3)

where €2 is the element-wise square root of the power cou-
pling matrix Q and G is an independent complex Gaussian
distributed random matrix, where all entries have zero mean
and unit variance. ©® stands for element-wise multiplication.
In [5] it is shown how the model parameters (€2, Urx, Ugrx)
are obtained. For our purpose, two correlation types (moder-
ate and strong correlation) are investigated. The used model

!n the following, this novel model is called W-model due to its
inventor Werner Weichselberger [5].
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parameters are extracted from measurement data obtained
from MIMO channel measurements which were performed
at our Institute. A detailed description of the measurement
scenarios can be found in [6]>. In order to get a quantita-
tive value of the amount of correlation, we have calculated
the condition numbers cy (strongest Eigenvalue / weakest
Eigenvalue) of the correlation matrix R = Fy {HH H} for
uncorrelated, moderately and strongly correlated 4 x 4 and

2 x 2 MIMO channels:
x4

eyt =1;8.14; 22,92 and P =1; 2.74; 6.76 . (4)

3. UNION BOUND OF THE BER

In this paper we focus on ML receiver. The Pairwise Error
Probability (PEP) P. between two signals with Euclidean
distance d and the noise variance o2 of the additive Gaussian
noise is given by:

d2

202 |’

P.=Q (5)

where Q(.) denotes the well known Marcum Q-function. From
this equation it is obvious, that the Euclidean distance d gov-
erns the error performance of the ML receiver. Therefore, we
are interested in calculating the mutual Euclidean distances
between all received signals. The Euclidean distance between
the transmit signal vector c; and c; at the receiver can be
calculated as:

d;; = llyi—y;lI* =|He; + n— (He; +n) |
= |H(c; —c)|>=b;;"H" Hb, ; . (6)
S—— S—~—
bi‘j Z;.j

Here, b;; = ¢; — c; is called difference vector and z;; =
Hb; ;. For our purpose, it is sufficient to investigate the
statistics of the Euclidean distance d; ;. A linear transforma-
tion of a complex Gaussian random vector / matrix results
again in a complex Gaussian random vector / matrix and
therefore the random vector z;; is complex Gaussian dis-
tributed with the following first and second order moment:

Ea {Hb;;} =0,
Ex {Hb; ;b H"} . (7)

=
Z
|

Therefore, z;,; can be modeled as:
Rzi,jg ) (8)

where g is an independent complex Gaussian distributed vec-
tor with zero mean and unit variance. Then df,j can be writ-

ten as: 2 H H
di,j =Z,jZij = 8 Rzi,jg . (9)

Zi,j =

3.1. Uncorrelated Channels

The main goal of this section is to show our specific way of
calculating the union bound, although a quite similar bound
already exists for uncorrelated MIMO channels [10]. For un-

correlated channels R, ; degenerates to a scaled unity ma-
i Rzi,j = bi,iji,j I, (10)
————

2
di,j (TX)

2Moderately correlated channels and strongly correlated chan-
nels are modeled by the model parameters extracted from the
measurements indicated in [6] by 1D3 and 14D3, respectively.

where dfj (TX) is the squared Euclidean distance at the trans-

mitter and I is the unity matrix. Hence, Eqn. (9) simplifies
to:

(11)

The sum over nr squared magnitudes of independent com-
plex Gaussian random variables with the same variance df]. (TX)

di; =d;; rx) (I + g2l + -+ lgnal®) -

is a x? distributed random variable with 2ng degrees of free-
dom. Thus, the Probability Density Function (PDF) of d7 ;
is:

3
gnR—l - el
@ o))
i,j (TX) R
Now, we know the PDF of the squared Euclidean distance

df ; at the receiver, but actually we are interested in the mean
error performance. The mean PEP is calculated as:

P (€)= (12)

2

.. dz? .
idd. i,J

I3

o /€ gret ey
— Q S — e 1,3 (TX) dé‘
/0 202 (d?,j (TX)) ET(nr)

np—1
_(1_Mi,j )"R RZ nr—1+k (1+Hi,j)k
o 2 P k 2 ’

with
d2
i,5 (TX)
Bij = AT - (13)
don +di; 1,

The superscript i.i.d. is used to distinguish the PEPs for
uncorrelated and correlated channels. The integral is taken
from [8]. As it can be seen in Eqn. (13) the only essential
parameter, which determines the PEP is d?,]. (TX)" The main
idea of this paper is to simplify the evaluation of a union
bound of the overall BER via the introduction of ETs. Our
method can be explained best by an illustrative example.
As illustrative example No.1 we discuss the case of a nr =
nr = 4 MIMO system with BPSK modulation. Using BPSK
modulation (s; € +1), there are 2”7 = 2* = 16 different
transmit signal vectors c;. Therefore, there are 16 - 16 =
256 possible crossover events, where the signal vector c; is
transmitted and the receiver decides in favor of ¢;. Thus, we
have to consider 256 difference vectors b; ; =c;—c;. For each
of these 256 difference vectors b; j, the Euclidean distance
at the transmitter d?’j (TX) = b;;7b;; and the number of
corresponding bit errors npgi,; can be calculated.

Definition: A so-called Error Type (ET) is defined as the
set of all crossover events which have the same d?,j (TX) and
NBEi,j-

The number of crossover events with the same parameter
pair (d?’j (TX) npgi,j) is denoted by f. The surprising re-
sult is, that in our example there are only four different ETs.
In general, the number of different ETs is denoted by ngr.
The concept of ETs was first presented in [7]. It is impor-
tant to note that in the following the index (i,j) is replaced
by (k), because now there are only four different values for
the parameter pair di]. (TX) and npgs j. Numerical values
for these parameters are listed in Table 1. With this,
the union bound of the BER, which is the sum over all 256
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LET | dicrx, | fr | moe |

0 16 0
1 4 64 1
2 8 96 2
3 12 64 3
4 16 16 4

Table 1: The list of the characteristic parameters for all four
ETs, namely di (TX)’ fr and npg, (Example No.1).

crossover events, can be written as the weighted sum over all
ETs:

nNET

BER < pepii-d _ _fx__neE,
2 U= AT QA e

Here, |A| denotes the size of the symbol alphabet of the
modulation format and 1d denotes the base 2 logarithm.

(14)

3.2. Correlated Channels
For correlated channels (correlation incorporated by the W-
model) the equations

R:;;, = Ugxdiag\" A0 A0 URxY
A9 ((bi,jTUTx) © Qm) Urx b ;" (15)

hold, where Q,, denotes the m-th row of the power coupling
matrix €. The number of non zero Eigenvalues of R, ;
is denoted by nnyz. Hence, in the correlated case Eqn. (9)
changes to:

= lgu A + g2 05+
The sum over independent random variables corresponds to
the product of the characteristic functions [9]. Since the ran-
dom variables |g;|* follow a x?-distribution with two degrees

of freedom, the characteristic function of d; ; is
NNz

H -
oy (1)
iy L= JwAm

Applying a partial fraction expansion to Eqn. (17), the PDF
of df,j is easily obtained by the inverse Fourier transform of

U2 (—jw), resulting in:
2,7
(/\gb,j))"R‘Q

+ | gnnz PAS) . (16)

‘I’d2 (jw) =

(17)

Nz e
)\51?1)

P, (O =) (18)
’ m=1 At — A )
1 (
n#m
Then, the mean PEP results in:
dz .
PEP)Y =En {Q < 2;@) } (19)

NNz

e

~([¢ \-o7
1,7
/ QA faoz | "
el H(/\(w) )\(w)) n

ném

nNz ()\(%JD nNz—1 N

Z (/\(““ -AE) 1_\/J
m

The integral has the same structure as in Eqn. (13). As
it can be seen in Eqn. (18) the relevant parameters, which
influence the PEP are the Eigenvalues A%7) (m=1, 2,
nnz). For this reason in principle we approach in the same
way as in the case of an uncorrelated channel: Again, we list
all ETs with their parameters in a new table quite similar
to Tab. (1). The ounly difference is that there are now nyz
parameters A7) (m=1, 2, ..., nnyz) instead of the single
parameter di (TX)" In the correlated case of our example
No.1, there are 40 ETs (ngr = 40) and therefore the table is
not shown here in detail. Whereby these ETs were found by
an exhaustive search.

The union bound of the BER, which is the sum over all
256 crossover events, again can be written as the weighted

sum over all ETs:
nMET

BER < Y wy PEP}" wy, =
k

fr NBE,

AT (A e - 20

4. RESULTS

The simulations are based on MIMO channel realizations
which are generated by the W-model. The parameters of
the W-model are extracted from measurement data as men-
tioned in Sec. 2. Fig.l.a shows the union bounds (dashed
curves) and the simulation results (solid curves) of the BER
vs. SNR for a 4x4 system with BPSK modulation. Fig.1.b
shows the results for a 2x2 system with 16QAM modulation.
The red curve labeled by the o-markers shows the perfor-
mance for uncorrelated channels, the green curve labeled by
the a-markers shows the performance for moderately corre-
lated channels and the blue curve labeled by the x-markers
shows the performance for strongly correlated channels. As it
can be seen, the union bounds for the 4x4 system with BPSK
modulation are tight for BERs lower than 102 and for the
2x2 system with 16QAM modulation the union bound is
almost tight for BERs lower than 1072,

At this point we want to point out an essential difference
to the calculations of the union bound in [2] [10]. In these
contributions the authors make the assumption the one sym-
bol error results in exactly one bit error. This assumption is
not justified in general, especially if high order modulation
formats are used. Therefore the “union bounds” in [2] [10]
are in fact rather performance approximations than union
bounds.

Comparing the results in Fig.1 of [10] with our results in
Fig.1.b, we observe that the “union bound” for the 2x2 sys-
tem with 16QAM modulation in [10] is very tight for high
SNR values. We suppose that this effect is due to the wrong
assumption, of one bit error for each symbol error, made in
[10].

Secondly, we would like to point out that the curves in
Fig.1l.a have all identical slopes of four decades per 10dB
SNR and in Fig.1.b identical slopes of two decades per 10dB
SNR . This is because all PEPs in Eqn. (18) for correlated
channels have the slope:

d (1og10PEPXV

d(log;oSNR) (21)

lim —NNZ .
SNR—

Consequently, the total BER has also this slope of —nnyz and
therefore it can be concluded that full diversity (nyz = ngr)
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Figure 1: Figure a. shows the union bounds (dashed curves) and the simulation results (solid curves) for a 4x4 MIMO
system with BPSK modulation and different channel correlations (uncorrelated - red, o-marker | moderately correlated -
green, a-marker | strongly correlated - blue x-marker). Figure b. shows corresponding results for a 2x2 MIMO system with

16QAM modulation.

is achieved, if all Eigenvalues )\%’J) are non zero. This is
true if the sum of elements over each row of the matrix Q
in Eqn.(15) is non zero. Note that the Eigenvalues of the
correlation matrices of the Kronecker model are related to
the rows and the columns of the matrix € of the W-model.
More details can be found in [5]. The matrices € used in
our simulations indeed have the above mentioned property
and therefore full diversity is achieved in all cases. Hence,
it is the matrix € that determines the amount of diversity.
Le., a 4x4 matrix Q with two rows filled with zeros, leads
to a diversity of two instead of four and thus a diversity loss
of two is observed due to a severe deficiency of €2. This
loss of diversity is not observed in [2], because there always
full rank correlation matrices are assumed and therefore no
diversity loss due to fading correlation can occur. However,
channel correlation causes an SNR penalty that depends on
the amount of correlation as can be seen in Fig.1.

5. CONCLUSION

In this paper an efficient and clear analytical calculation of
a tight union bound of the BER of uncoded MIMO systems
including uncorrelated and correlated MIMO channels us-
ing ML receivers is presented. Spatial channel correlation is
incorporated by a novel correlation model, called W-model,
introduced in [5]. The calculated union bounds are compared
to simulation results in order to verify the tightness of these
union bounds. As it can be seen from the simulation results
in most cases, fading correlation only causes an SNR penalty
but no diversity loss (equal slope of the BER curves for dif-
ferent amount of correlation). Full diversity is achieved, if
the power coupling matrix € does not have rows containing
zeros only. An [-fold diversity loss only occurs if all entries
of [ rows of the matrix 2 are zero.
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