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ABSTRACT
The sphere decoding algorithm is an efficient algorithm used to

solve the maximum likelihood detection problem in several digi-

tal communication systems. The sphere decoding algorithm has

previously been claimed to have polynomial expected complexity.

While it is true that the algorithm has an expected complexity com-

parable to that of other polynomial time algorithms for problems

of moderate size it is a misconception that the expected number

of operations asymptotically grow as a polynomial function of the

problem size. In order to illustrate this point we derive an ex-

ponential lower bound on the expected complexity of the sphere

decoder.

1. INTRODUCTION

The sphere decoding algorithm has received much interest recently

since it has been shown to very efficiently solve several otherwise

computationally hard optimization problems that arise in digital

communications [1, 2, 3].

The efficiency of the sphere decoder has previously been ex-

plained by polynomial expected complexity [4, 5]. The general

detection problem is NP-hard and it is known that the worst case

complexity is exponential but it is also known that the worst case

complexity of the sphere decoder does not represent the practical

performance of the algorithm. Instead, the average or expected

performance is comparable to that of polynomial time algorithms

for many problems of practical relevance. However, to attribute

the efficiency of the algorithm to polynomial expected complexity

is unfortunate since it is not true under the common definition of

polynomial complexity [6].

To be precise, let C(m, ρ) be the expected complexity of

sphere decoding where m is the number of symbols jointly de-

tected and where ρ is some finite signal to noise ratio (SNR). The

sphere decoder is said to be of polynomial expected, or average,

complexity for some SNR, ρ, if there exist a polynomial function

p(m) such that

C(m, ρ) ≤ p(m) ∀ m ≥ 1. (1)

It is shown herein that for any ρ, no matter how large, there can

never exist such a polynomial function. This is done by deriving

an exponential lower bound on C(m, ρ). The class of detection

problems considered herein include problems previously claimed

to be solvable with polynomial expected complexity, se for exam-

ple [4].

Our main result and contribution is given by Theorem 1.

∗jalden@s3.kth.se

2. PROBLEM DEFINITION

Let s be a vector of independent symbols, s0, . . . , sm−1, drawn

from a finite complex constellation S ⊂ C. That is, s ∈ Sm,

where

Sm = S × . . . × S︸ ︷︷ ︸
m

.

In this paper we consider the detection of such a symbol vector, s̄,

sent across a general MIMO channel

x = Hs̄ + v (2)

where H ∈ C
n×m, n ≥ m, is a random channel matrix known to

the receiver and where v ∈ C
n is a zero mean complex Gaussian

noise vector with a variance of σ2 per element. The noise, v, is as-

sumed independent of H. Herein s̄ will always denote the symbol

vector actually sent across the channel to differentiate between it

and an arbitrary symbol vector s. The set S could for instance be,

but is not limited to, a PAM, QAM or PSK constellation. Also, (2)

is applicable to a wide variety of systems, e.g. multiple antenna

systems, multi carrier systems and certain classes of space time

block codes and CDMA systems.

It is well known that the maximum likelihood (ML) estimate

of s̄ is given by

ŝML = argmin
s∈Sm

‖x − Hs‖2, (3)

a problem known to be NP-hard for general H and x [7].

Herein, some additional assumptions will be made about the

system defined by (2). The symbol vectors s̄ are assumed indepen-

dent of H and v and uniformly distributed on Sm. This implies

that the symbols within the symbol vector are statistically indepen-

dent. The channel, H, and symbol vector, s̄, are assumed to, for

some ρs, satisfy

E
{‖his̄i‖2

}
σ2

≤ ρs i = 1, . . . , m (4)

where hi is the ith column of H. The bound in (4) ensures that

the SNR per symbol has an upper bound or specifically, that each

symbol is transmitted with finite energy. This is of course satisfied

for most systems of practical interest. It is however important to

explicitly state when the asymptotic behavior of a system is con-

sidered. Note that under the assumptions on s̄ (4) implies

E
{‖Hs̄‖2

}
E {‖v‖2}

∆
= ρ ≤ ρs. (5)
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Fig. 1. Search tree for a problem of size m = 4 and symbol set

of cardinality |S| = 2. Nodes visited by the sphere decoder are

shown in black.

In much of the sphere decoding literature H, s, v and S are

assumed to be real valued and all results herein hold under these

assumptions. Since it was recently shown [8] how to adapt the

sphere decoder to complex constellations we will however con-

sider this, more general, case.

3. THE SPHERE DECODER

The ML detector (3) can alternatively be written as

ŝML = argmin
s∈Sm

‖Q∗x − Rs‖2, (6)

where QR = H is the QR factorization of H, that is Q ∈ C
n×m

is a matrix with orthonormal columns and R ∈ C
m×m is upper

triangular. The complexity of solving (6) or (3) by searching over

all s ∈ Sm grows as |S|m where |S| is the cardinality, or size, of

the set S. Instead, the sphere decoder solves (6) by searching only

over those s ∈ Sm that satisfy

‖Q∗x − Rs‖2 = ‖p‖2 ≤ r2
(7)

for some r2. If r2 is chosen such that at least one s ∈ Sm satisfies

(7) then this strategy will yield the ML solution.

A set of necessary conditions for (7) to be satisfied is that

m−1∑
i=m−k

|pi|2 ≤ r2 k = 1, . . . , m (8)

where pi is the ith component of p = Q∗x − Rs. Due to the

upper triangular structure of R the sum of (8), for some k, only

depends on si for i ≥ m − k. Thus, if for some combination

of sm−k, . . . , sm−1 (8) is violated all symbol vectors, s, sharing

this combination of the k last symbols can be excluded from the

search.

The sphere decoding algorithm is a systematic way of testing

(8). The set of possible symbols s ∈ Sm can be illustrated by a

tree where each path from the top to the bottom correspond to a

specific symbol vector, s, see Figure 1. The algorithm proceeds

down the tree by making decisions about the symbols, si, start-

ing with i = m − 1 until (8) is violated at some depth k. The

algorithm then updates previous choices of si and proceeds down

the tree again until all possible combinations not violating (8) have

been tried. If the bottom of the tree is reached it is known that the

symbol vector, s, corresponding to the current path satisfies (7) and

s is saved before the algorithm continues. The complexity of the

sphere decoding algorithm is proportional to the number of nodes

visited by the algorithm.

Note that the algorithm is sensitive to the choice of r2. If r2

is chosen to small no symbol vectors, s, will satisfy (7) which

is unacceptable. If r2 is chosen to large the algorithm will visit

to many nodes and be inefficient. Since it is not the purpose of

this paper to discuss how to optimally choose r2 we will simply

assume that it is done in a way which ensures that (7) is satisfied

for s = s̄ with high probability. An example of such a strategy is

given in [4] and [8]. To be precise, we assume that

E
{‖Q∗x − Rs̄‖2} = E

{‖Q∗v‖2} = σ2m ≤ r2. (9)

The vector Q∗v ∈ C
m is a Gaussian vector with variance σ2 per

element due to the orthogonality of Q.

4. COMPLEXITY

Let N be the number of nodes visited in the search tree for fixed

H and x. Let the expected complexity, C, be

C = EH,x {N} (10)

The object herein is to show that the expected complexity, or ex-

pected number of nodes visited, grows exponentially in m. This is

formalized in the following theorem.

Theorem 1 Assume that s̄ is drawn uniformly from the finite set
Sm. Assume that H and s̄ satisfy (4). Then a lower bound on the
expected complexity, as defined in (10), is given by

C(m) ≥ |S|ηm − 1

|S| − 1
, η =

1

4ρs + 2
. (11)

Proof: The proof is given in Section 4.2.

Note that by Theorem 1 the expected complexity, C(m), of

the algorithm is lower bounded by an exponential function in m.

This proves that the expected complexity can not be polynomial.

4.1. Expected Complexity

To prove the theorem, it is convenient to first introduce a lemma

which formulates the expected complexity, C, in an alternative

way. It does so in terms of the search depth along randomly chosen

paths through the tree.

Lemma 1 Given H, x and some s ∈ Sm, let d be the depth of the
path corresponding to s. That is,

d = sup{k |
m−1∑

i=m−k

|pi|2 ≤ r2} (12)

where p = Q∗x−Rs. Then the expected complexity, C, given by
(10) can be written as

C =
EH,x,s

{|S|d+1
} − 1

|S| − 1
(13)

if s is uniformly distributed over Sm.

Proof: For fixed H and s̄, view the search depth, d, as a function

of s, that is d = d(s). Also, let I(sm−k, . . . , sm) be an indicator

function equal to 1 if

m−1∑
i=m−k

|pi|2 ≤ r2
(14)
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and 0 otherwise. In other words, I indicates if a particular node is

visited by the algorithm. For notational simplicity, let∑
i,j

· denote
∑

(si,...,sj)∈Sj−i+1

·

for j ≥ i and interpret ∑
i,j

· as 1

for j < i. Then, by using the indicator function and enumerating

all nodes from depth 0 to m the number of nodes visited by the

algorithm can be written as

N =

m∑
k=0

∑
m−k,m−1

I(sm−k, . . . , sm−1)

=

m∑
k=0

∑
0,m−k−1

|S|−(m−k)
∑

m−k,m−1

I(sm−k, . . . , sm−1)

= |S|−m
m∑

k=0

∑
s∈Sm

|S|kI(sm−k, . . . , sm−1)

=
∑

s∈Sm

|S|−m
m∑

k=0

|S|kI(sm−k, . . . , sm−1)

=
∑

s∈Sm

|S|−m

d(s)∑
k=0

|S|k

=
∑

s∈Sm

|S|−m (|S|d(s)+1 − 1)/(|S| − 1). (15)

The last line equals equals

N = Es

{ |S|d(s)+1 − 1

|S| − 1

}
(16)

if s is uniformly distributed on Sm. The expected complexity, C,

can thus be written as

C = EH,x {N} =
EH,x,s

{|S|d+1
} − 1

|S| − 1
(17)

which concludes the proof. �

4.2. Proof of Theorem 1

By Jensens inequality [9] the expected value in Lemma 1 can be

lower bounded by

E
{
|S|d+1

}
≥ |S|E{d}+1

(18)

since |S|x is a convex function of x. To prove Theorem 1 it must

be shown that the expected value of d grows linearly with m, that

is

E {d} ≥ ηm − 1.

For notational purposes, let Φk be a diagonal matrix with the

k last diagonal elements equal to 1 and the remaining elements

equal to 0. The sum of (8) can then be written as

m−1∑
i=m−k

|pi|2 = ‖Φkp‖2
(19)

and the probability that d is strictly smaller than some k is given

by

Pr {d < k} = Pr
{||Φkp||2 > r2} . (20)

The Markov inequality [9] upper bounds this probability as

Pr
{||Φkp||2 > r2} ≤ E

{||Φkp||2
}

r2
. (21)

The probability that the depth d is at least as large as k can thus be

lower bounded by

Pr {d ≥ k} ≥ 1 − E
{||Φkp||2

}
r2

. (22)

Since R, s̄, s, and v are assumed independent, the expected value

can be computed as

E
{‖Φkp‖2} = E

{‖ΦkR(s̄ − s) + ΦkQ
∗v‖2}

=

m−1∑
i=m−k

E
{|s̄i − si|2

}
E

{‖Φkri‖2} + kσ2. (23)

Since both s̄i and si are assumed independent and uniformly dis-

tributed on S,

E
{|s̄i − si|2

} ≤ 2E
{|s̄i|2

}
. (24)

The above holds with equality if E{s̄i} = 0 which is commonly

the case. Since ri = Q∗hi

E
{‖Φkri‖2} ≤ E

{‖hi‖2} . (25)

Using

E
{‖his̄i‖2} = E

{‖hi‖2} E
{|s̄i|2

}
. (26)

together with (24) and (25) yields

E
{|s̄i − si|2

}
E

{‖Φkri‖2} ≤ 2ρsσ
2. (27)

The expression of (23) can thus be bounded by

E
{‖Φkp‖2} ≤ kσ2(2ρs + 1). (28)

Using the additional assumption about r2 in (9), that is

r2 ≥ σ2m,

and (22) the probability that d is greater than or equal to k can be

bounded as

Pr {d ≥ k} ≥ 1 − k(2ρs + 1)

m
. (29)

Let a be given by

a =

⌊
m

2ρs + 1

⌋
, (30)

then
m

2ρs + 1
≥ a ≥ m

2ρs + 1
− 1 (31)

and

Pr {d ≥ k} ≥ 1 − k

a
= Pr {ν ≥ k} k = 0, . . . , a (32)

for an integer valued random variable ν with probability mass

function

Pr {ν = k} =
1

a
for k = 0, . . . , a − 1. (33)
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Due to (32), the expected value of d can be bounded by

E {d} ≥ E {ν} =
1

2
(a − 1)

≥ 1

2
(

m

2ρs + 1
− 2) =

m

4ρs + 2
− 1. (34)

Letting

η =
1

4ρs + 2

and using (18), (34) with Lemma 1 concludes the proof. �

5. COMMENTS

The result derived herein is of a theoretical nature and is in gen-

eral not a good approximation of the complexity for most detection

problems. A more informative measure of the expected complex-

ity would be the rate at which the expected complexity tends to

infinity. Such a result would for instance be

C(m, ρ)
.
= |S|γm

(35)

where the symbol
.
= means ”equal to the first order in the expo-

nent”, that is

γ = lim
m→∞

1

m
log|S| C(m, ρ). (36)

From the result given by Theorem 1 it is known that γ ≥ η. It

is however unlikely that this inequality is tight for any relevant

system. How to compute γ is not within the scope of this paper

but the topic of [10]. However, to illustrate this point, the relation

of η, for ρs = ρ, and γ are shown in Figure 2 for the case where

S = {+1, 1} and where both H ∈ R
m×m and v ∈ R

m consist of

i.i.d. real valued normally distributed elements.

There are several known improvements to the sphere decoding

algorithm that are not included in this work. These include adap-

tively updating the radius r2 and permuting the symbol vector s in

order to improve the efficiency of the algorithm [11]. Although not

proved by the result herein we believe that this does not results in

polynomial time versions of the sphere decoder. These improve-

ments may however further decrease the rate γ.

6. CONCLUSIONS

We show herein that the sphere decoder is of exponential expected

complexity contrary to previous claims. This is done this by de-

riving an exponential lower bound on the expected complexity

which hold under very general assumptions about the communi-

cation system.

It is important to realize what is shown herein and what is

not. The sphere decoder could for some SNR be more efficient

that a polynomial time algorithm for all problem sizes of practi-

cal interest without contradicting the fact that it is of exponential

expected complexity. What is stated by the complexity result is

that there will always be some problem size where the polynomial

time algorithm is more efficient than the sphere decoder. How-

ever, if problems of that size are to be considered interesting is of

course dependent on the specific application. It is nevertheless im-

portant to realize that there is a fundamental difference in terms of

complexity between the sphere decoder and polynomial complex-

ity alternatives.

0 5 10 15 20 25 30

10
−3

10
−2

10
−1

10
0

γ

η

ρ [dB]

Fig. 2. Comparison of γ and η as a function of ρ
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