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ABSTRACT

We derive the performance of post-detection-combining (PDC)
over Rayleigh fading channels with impulsive noise and compare it
with maximum-ratio-combining (MRC). The bit error rates (BER)
and simple upper and lower bounds are derived in closed form for
the first time in the literature for these two techniques over impul-
sive noise channels. We show how the impulsive noise deteriorates
the performance compared with Gaussian noise. PDC is shown to
be more robust to impulsive noise than MRC, especially when the
number of antenna is large. Simulation results corroborate our
analysis.

1. INTRODUCTION

Diversity is one of the most important tools for combating the dele-
terious effects of fading in wireless channels. Exploiting diver-
sity necessitates having access to multiple copies of the transmit-
ted signal. Depending on the complexity and the degree of chan-
nel knowledge at the receiver, different diversity combining tech-
niques have been proposed in the literature which include Maximal
Ratio Combining (MRC), Equal Gain Combining (EGC), Selec-
tion Combining (SC), and Post-Detection Combining (PDC) [1].
The noise in each diversity branch for these schemes have often
been assumed Gaussian. However, man-made electromagnetic in-
terference, atmospheric noise, or ignition noise are prevalent, and
often impulsive [12, 8]. This requires analysis and design of di-
versity combining schemes by taking into account the impulsive
nature of the noise.

The design of optimum receivers over fading, impulsive noise
channels were considered in [4, 3], where a spherically invariant
random process was assumed for the noise distribution. Adap-
tive diversity receivers were considered in [2] wherein the receiver
adapts to the unknown parameters of the noise process. Perfor-
mance over nonfading impulsive noise channels for optimum and
suboptimum receivers were analyzed in [6], and iterative algo-
rithms for decoding codes over the complex field were introduced
in [7]. Studies that analyze the performance of DPSK with EGC
and SC over Ricean fading channels were considered in [10] and
in [13].

Our aim in this paper is to analyze the performance of con-
ventional receivers: MRC and PDC over impulsive noise chan-
nels. Unlike [10] and [13], we will consider coherent combining
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schemes and derive simple bounds that give insight about how
much the impulsive nature of the noise deteriorates the perfor-
mance compared to the Gaussian case, over fading channels. We
will also prove that the post-detection combiner is particularly ro-
bust to impulsive noise, due to its nonlinear nature. This was ob-
served in [2], but the BER performance was not derived. In fact,
we theoretically show that the BER upper bound of PDC does not
depend on the impulsive noise parameters, while the upper bound
of MRC does. Recalling that the PDC is considerably less com-
plex than MRC, it appears that PDC is a good diversity combining
technique in impulsive environments.

In Section 2 we adopt Middleton’s Class A model for the noise
distribution. In Section 3, we analyze the performance of MRC
and PDC under the impulsive noise model and derive upper and
lower bounds. In Section 4 the numerical results are presented,
and Section 5 concludes the paper.

2. SYSTEM MODEL

Consider the following Lth order diversity reception model:

xl =
√

ρ hls + wl , l = 1, . . . , L , (1)

where xl is the received signal, hl is a complex Gaussian channel
gain with zero-mean and variance normalized to 1, wl is the noise
term corresponding to the lth diversity branch, s ∈ {−1/

√
2, 1/

√
2}

is the transmitted symbol from a BPSK constellation, ρ is the
average SNR per branch, and we have dropped the time index
since we assume symbol-by-symbol decoding. We assume that
each noise sample wl := gl + il is the superposition of a back-
ground Gaussian component gl, and impulsive component il with
T := var(gl)/var(il), denoting their power ratio. We will assume
Middleton’s class-A model wherein the pdf of the complex valued
noise at any one of the branches can be written as:

p(wl) =
∞∑

m=0

αm

πσ2
m

exp

(
−|wl|2

σ2
m

)
, (2)

where αm := exp(−A)Am/m!, σ2
m := σ2(m/A + T )/(1 + T ),

and σ2 := var(wl). As defined before, T represents the power
ratio of the background noise and the impulsive part, and A is
the so-called impulsive index, which would yield an impulsive il
for small values of A, and a near Gaussian il , when A is large
[12, 8, 6]. As clearly seen from its pdf in (2) the noise wl is not
Gaussian. However, the class-A noise can be viewed as condition-
ally Gaussian, also referred to as compound Gaussian. Therefore,
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wl, when conditioned on a Poisson random variable Pl with pa-
rameter A, is Gaussian with mean zero and variance

vl := var(wl|Pl) = σ2

(
Pl

A(T + 1)
+

T

T + 1

)
, l = 1, ..., L.

(3)
Note that var(wl) = EPl [var(wl|Pl)] = EPl [vl] = σ2, where
the last equality follows from (3) and the fact that E[Pl] = A.
The integer random variable Pl can be interpreted as the state of
the noise indicating whether there is an impulse present (in which
case Pl > 0) and the strength of the impulsive noise. To complete
our description of the noise model, we have to specify the joint
distribution of v1, . . . , vL, which will determine the joint distribu-
tion of wl. we assume that vl are i.i.d. random variables with
distribution as described in (3), so that the joint distribution of
w := [w1, . . . , wL] is given by p(w) =

∏L
l=1 p(wl). Clearly

the w1, . . . , wL are statistically independent [5].
In this paper, we will investigate the performance of diversity

combining schemes under the above noise model. The channel
state information h1, . . . , hL is assumed known or estimated at
the receiver, however the Poisson noise state P1, . . . , PL, are as-
sumed unknown at the receiver. We will focus on the performance
for BPSK over Rayleigh fading channels. The extension to M-PSK
or M-QAM with Ricean or Nakagami fading channels is straight-
forward, but not included here because of space limitations.

Throughout we will use the following vector notation for the
random variables involved: P := [P1, . . . , PL], and h := [h1, ...,
hL]. Also we use EA,B [C] to denote the expected value of the
random variable C with respect to the distributions of the random
variables A and B.

3. PERFORMANCE OF MRC AND PDC

In this section, we will analyze the performance of MRC and PDC
for impulsive channels and derive simple performance bounds.

3.1. MRC Performance

We will start with the performance of the MRC receiver. The con-
ventional MRC receiver decides on the transmitted signal by com-
puting

ŝ = sign

(
L∑

l=1

�{h∗
l xl}

)
, (4)

where �{·} denotes the real part, and sign(·) is 1 for positive ar-
guments and 0 else. We note that (4) maximizes the SNR at the de-
cision device, however, since wl are not Gaussian, maximization
of the SNR does not translate into minimization of the BER. We
will still analyze the performance of conventional MRC receiver
in (4) to see how robust it is to impulsive noise. The probability of
error of MRC conditioned on the channel h and any realization of
the noise state P can be written as

BERMRC(ρ|h,P) = Q

⎛
⎜⎜⎝

√√√√√ 2ρ
(∑L

l=1 |hl|2
)2

∑L
l=1 |hl|2vl

⎞
⎟⎟⎠ , (5)

by expressing the conditional instantaneous SNR at the output of
the combiner in terms of ρ, |hl|, and vl. The average bit error rate
is given by taking expectation of (5) with respect to the distribu-
tions of h and P, which requires the computation of an L-fold

integral and sum. Unfortunately this is not analytically tractable.
The best avenue for obtaining exact expressions for the BER is
performing the expectations using Monte Carlo integration. How-
ever, since this does not provide insight as to how the average BER
depends on the noise parameters, we will proceed with an upper
bound for MRC.

To find the upper bound, we start by using the standard bound
on the Q(·) function to bound (5):

BERMRC(ρ|h,P) ≤ 1

2
exp

⎛
⎜⎝−

ρ
(∑L

l=1 |hl|2
)2

∑L
l=1 |hl|2vl

⎞
⎟⎠ . (6)

Suppose now that vmax := maxl vl. Then it is easy to see that
the right hand side of (6) can be further upper bounded by replac-
ing each vl in the denominator with vmax and canceling out the
common

∑L
l=1 |hl|2 from the numerator and denominator:

BERMRC(ρ|h,P) ≤ 1

2
exp

(
−ρ

∑L
l=1 |hl|2
vmax

)
. (7)

Using the fact that each |hl|2 is exponentially distributed, we can
average both sides of (7) with respect to h:

Eh [BERMRC(ρ|h, vmax)] ≤ 1

2

(
vmax

vmax + ρ

)L

. (8)

Taking expectations of both sides in (8) with respect to vmax we
get

Eh,P [BERMRC(ρ|h,P)] ≤ 1

2

∞∑
m=0

P [vmax = σ2
m]

(
σ2

m

σ2
m + ρ

)L

.

(9)
To calculate (9) we need an expression for P [vmax = σ2

m]. Re-
calling that vmax is the maximum of L iid random variables given
in (3), its probability mass function is easily computed as:

P [vmax = σ2
m] =

(
m∑

k=0

e−A Ak

k!

)L

−
(

m−1∑
k=0

e−A Ak

k!

)L

.

(10)
Thus, the upper bound is given by substituting (10) into (9).

It is possible to considerably simplify (9) by sacrificing the
tightness of the bound. To show how, we write (10) as F L

ν (m) −
F L

ν (m − 1) where Fν(m) := P [ν ≤ σ2
m]. By expanding (10)

using binomial theorem, and using the fact that Fν(m) ≤ 1, we
can show that

P [vmax = σ2
m] ≤ LP [v = σ2

m] = Lαm . (11)

We can now further upper bound the right hand side in (9) by dis-
carding the σ2

m term in the denominator yielding

Eh,vmax [BERMRC(ρ|h, vmax)] ≤ 1

2

∞∑
m=0

P [vmax = σ2
m]

(
σ2

m

ρ

)L

≤
( ρ

σ2

)−L
(

L

2

∞∑
m=0

e−AAm(1 + T )

m!
(

m
A

+ T
)

)
, (12)

where for the last inequality we used (11). This upper bound is
loose when SNR is small, and it is a tight bound at high SNR,
which actually reflects the diversity order of MRC, as we will show
in Fig. 1. In the following, we will investigate the performance of
the PDC.
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3.2. Post-Detection Combining

The PDC makes hard decisions on each branch (by looking at their
sign), and combines these decisions:

ŝ =

L∑
l=1

sign [� (h∗
l xl)] . (13)

Notice that the nonlinear operation of taking the sign is applied
before adding the contributions of the branches in this case, as
opposed to what we saw for MRC in (4). This is well-known to
reduce the diversity order by a factor of two over the nonimpulsive
Gaussian channel. The loss in diversity order will also be present
when the noise is impulsive, however, we will derive a bound on
the performance of (13) that is independent of A, showing that (13)
is robust to impulsive noise. Also, PDC has the merit of easy im-
plementation for both coherent and non-coherent detection, which
motivates its use for both Gaussian and impulsive noise channels.
We first begin by deriving the exact BER and then proceed with
the bound. For any realization of the random variables hl and vl,
the probability of making an incorrect decision at the lth branch is
given by

pl := Q

(√
2ρ|hl|2

vl

)
. (14)

Making an error after combining the branches as in (13) means
having L/2 or more branches be incorrect. Hence, for a given
realization of h and P, the BER is the probability that more than
L/2 branches or more are in error. This probability is given by

BERP DC (ρ|h,P) =

L∑
k=� L

2 �

∑
Sk⊂L

∏
i∈Sk

pi

∏
j∈(L−Sk)

(1 − pj)

(15)
where L := {1, . . . , L}, and Sk is any subset of L with k ele-

ments, and − is the set difference operation. Hence the inner sum
in (15) is over all subsets of L with size k, and contains

(
L
k

)
terms.

Since vl and hl are iid, so are pl, l = 1, . . . , L. Then, the expected
value of each term in the inner sum with respect to pl is the same
and given by pk(1 − p)L−k, where p := Ehl,vl [pl]. This means
that the expected value of (15) reduces to
Eh,P[BERP DC (ρ|h,P)] ={ ∑L

k=� L
2 �

(
L
k

)
pk(1 − p)L−k, L odd;∑L

k=� L
2 �+1

(
L
k

)
pk(1 − p)L−k + 1

2

(
L
L
2

)
p

L
2 (1 − p)

L
2 , L even.

(16)
where p := Ehl,vl [pl]. In order to determine the average bit er-
ror rate, the only thing that remains is the computation of p. But
this can be done by averaging (14) with respect to hl and vl respec-
tively. Averaging (14) with respect to hl we obtain the well-known
expression [11]:

Ehl [pl] =
1

2

(
1 −

√
ρ

vl + ρ

)
. (17)

Averaging (17) with respect to vl, we obtain

p =
1

2

∞∑
m=0

αm

(
1 −

√
ρ

σ2
m + ρ

)
. (18)

Hence, the exact expected bit error rate of the sign detection scheme
is given by (16) where p is given by (18). Clearly, this closed-form

expression is useful in calculating the performance for any value
of ρ, A, σ2 and T . However, it is possible to upper bound (16) to
obtain a simpler formula that illuminates some of the properties of
the PDC in the presence of impulsive noise. To derive this upper
bound, we will first notice that

L∑
k=� L

2 �

(
L

k

)
pk(1 − p)L−k ≤

L∑
k=� L

2 �

(
L

k

)
pk , (19)

because 0 ≤ (1 − p)L−k ≤ 1. We then proceed to derive an
upper bound on p that will give us the desired simple expression.
Using (14), and the standard bound on the Q(·) function we have
pl ≤ (1/2) exp(−ρ|hl|2/vl). Taking expectations of both sides
with respect to hl, we obtain

Ehl [pl] ≤ 1

2(1 + ρ
vl

)
. (20)

Removing the additive 1 term will only make (20) larger, yielding
Ehl [pl] ≤ vl/(2ρ). Taking expectation of both sides with respect
to vl we obtain

p = Ehl,vl [pl] ≤ E[vl]

2ρ
=

(
2ρ

σ2

)−1

. (21)

Substituting (21) into the right hand side of (19) we obtain the
following bound:

Eh,P[BERP DC (ρ|h,P)] ≤
L∑

k=� L
2 �

2−k

(
L

k

) ( ρ

σ2

)−k

. (22)

In addition to being simpler than the exact expression, the bound
in (22) sheds light on a very important aspect of the PDC: the right
hand side of (22) does not depend on A or T . This means no matter
what values A and T take (i.e., no matter how impulsive the noise
is), the average BER will always be bounded by (22). This is in
contrast with the performance of the MRC receiver, which was
sensitive to the impulsive index A, and could perform poorly for
small values of A. Another important point is that since k ≥ L/2
in (22), the diversity order of the sign receiver is seen from (22) to
be at least L/2. This is worse than a diversity of order L for MRC.
Here, we see that the performance of diversity reception over non-
Gaussian impulsive noise channels show that there is a tradeoff
between the attainable diversity and coding gains.

4. NUMERICAL RESULTS

In this section, we will compare the performance of MRC and
PDC by Monte-Carlo simulations, and our theoretical results. We
choose two different sets of A and T . One is a more impulsive
noise channel with A = 10−4 and T = 0.1, and the other is more
Gaussian with A = 1 and T = 0.1. We consider L = 2 and
L = 4.

In Fig. 1, we show the BER of PDC and MRC over the more
impulsive channel (A = 10−4, T = 0.1) when L = 2 and L = 4.
We also show the upper bound of PDC and MRC (we only show
the upper bound for MRC when SNR > 30dB since it is loose at
low SNR). From this figure we see that the performance of MRC
is deteriorated by the impulsive noise: the BER curve is almost
flat from 10 - 35dB. Only at the SNR range of 35 - 50dB, we can
observe the diversity of L is achieved.
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Fig. 1. MRC and PDC over Rayleigh Fading Channels with Im-
pulsive Noise: A = 10−4, T = 0.1
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Fig. 2. MRC and PDC over Rayleigh Fading Channels with Im-
pulsive Noise: A = 1, T = 0.1

The BER curve of PDC is different from that of MRC. It goes
down continuously with SNR increases. Also, the diversity can
be seen to be approximately L/2, which is in accordance with our
analysis. The upper bound given in (22) is tight when SNR is high.

When L = 2, we see that MRC outperforms PDC for all
SNRs. However, when L = 4, the PDC outperforms MRC when
SNR is between 10 - 45dB as shown in Fig. 1. It is reasonable
to conjecture that MRC outperforms PDC at a very high SNR due
to the higher diversity order of MRC. We do not consider the ex-
tremely high SNR here since it is not practical. The advantage
of PDC over MRC with more antennas is intuitive, since PDC
first makes decisions over each antenna, and then collect the deci-
sions and make a final decision at the receiver. If a large impulsive
noise occurs at a few channels, they will affect the final decision
of MRC. However, in PDC, making decisions at each antenna first
and then combining the decisions may eliminate the effect of the
wrong decisions on these channels, if the number of wrong deci-
sions are less than L/2. So PDC can in fact combat large impulsive
noise especially when L is large.

If the noise is more Gaussian (A = 1, T = 0.1), we see from
Fig. 2 that MRC outperforms PDC for all L. It is also clear from
the plot that the diversity order of MRC is L and that of PDC is
L/2. This result is in accordance of the traditional analysis of the
performance over Rayleigh fading channel with AWGN.

From our simulation results, we may conclude that for a more
Gaussian channel, MRC is better than PDC. However, for a more

impulsive channel, when L ≥ 4, PDC is better than MRC.

5. CONCLUSIONS

In this paper, we discuss the performance of PDC over Rayleigh
fading channels with impulsive noise and compare it with MRC.
We analyze the BERs and gives upper and lower bounds. Through
our analysis and simulation results, we conclude that the MRC,
which is optimal over Gaussian noise is not necessarily optimal in
a the fading channel with impulsive noise. Instead, PDC is more
robust to impulsive noise at a moderate SNR especially when L is
large. Hence PDC is a good candidate for diversity combining in
highly impulsive environments.
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