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ABSTRACT

Quadratic forms on complex random matrices and their
joint eigenvalue densities are derived with the goal of
studying the ergodic channel capacity of multiple-input,
multiple-output (MIMO) Rayleigh distributed wireless
communication channels. We consider MIMO channels
which are correlated at the transmitter and/or the receiver
ends and evaluate the corresponding ergodic capacity for-
mulas. These formulas are expressed in terms of complex
zonal polynomials. This study shows how channel correla-
tion degrades the capacity of the communication systems.

1. INTRODUCTION

Let an m x n complex Gaussian random matrix X be dis-
tributed as X ~ CN(0,%; ® X2) with mean £{X} = 0
and covariance cov{X} = ¥; ® Xa, where ¥y € C™*™
and ¥y € C"*™ are positive definite Hermitian matrices.
Then the quadratic form on X associated with the positive
definite Hermitian matrix A is defined by

S = XAXH.

Here, we study the distribution of S, denoted by
CQum.n(A,X1,X2), and its application to information the-
ory. We also derive the joint eigenvalue density of S, which
is represented by complex zonal polynomials (also called
Schur polynomials). Complex zonal polynomials are sym-
metric polynomials in the eigenvalues of a complex matrix
[5], and they enable us to represent the derived densities as
infinite series.

The theory of quadratic forms on complex random ma-
trices is used to evaluate the capacity of MIMO wireless
communication systems. Note that the capacity of a com-
munication channel expresses the maximum rate at which
information can be reliably conveyed by the channel [1].
Let us denote the number of inputs (or transmitters) and
number of outputs (or receivers) of the MIMO wireless
communications system by n; and n,., respectively, and as-
sume that the channel coefficients are distributed as com-
plex Gaussian and correlated at both the transmitter and the
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receiver ends. Then the MIMO channel can be represented
by an n,. xn; complex random matrix H ~ CN (0, X,8%;),
where ¥, and ¥ represent the channel correlation at the re-
ceiver and transmitter ends, respectively. If ¥, = o%I,,
(or I,,) and Xy = I,,, (or 0I,,) then the channel is called
uncorrelated Rayleigh distributed channel. The information
processed by this random channel (or mutual information
of this random channel) is a random quantity which can be
measured in two different ways, namely, ergodic capacity
(or average mutual information) and capacity versus outage
(or z percent outage). Note that the z percent outage is
defined to be the minimum mutual information that occurs
in all but z percent of the instantiations of the channel. In
the sequel, we show that the ergodic capacity can be rep-
resented by quadratic forms on complex random matrices,
S = XX* (ie., A = I,,), which can be computed by means
of the eigenvalue density of S. This is the motivation behind
this study.

This paper is organized as follows. Quadratic forms on
complex random matrices are studied in Section 2. The ca-
pacity of a MIMO channel and the computational method
are given in Sections 3 and 4, respectively.

2. QUADRATIC FORMS ON RANDOM MATRICES

In this section, the densities of quadratic forms on complex
random matrices are given and their joint eigenvalue den-
sities are derived. The probability distributions of random
matrices are often derived in terms of hypergeometric func-
tions of matrix arguments. In the sequel, we need to use the
following complex hypergeometric function of two matrix
arguments,

B0 y) = D
k=0 Kk YRR

where X € C™*™_ Y € C"™™ and n > m. Moreover,
t = (k1,... ,km) denotes a partition of the integer k with
ki >--->ky >0andk =k +---+kpand ),
denotes summation over all partitions « of k. The complex
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zonal polynomial, Cy;(X), of a complex matrix X defined
in [3] is
CK(X) = X[n](l)X[n] (X), 2)

where x(,](1) is the dimension of the representation [«] of
the symmetric group given by

[T, (ki — kj — i+ )
[T, (ki +m —1)!

X[x) (1) = &! 3)

and X7, (X) is the character of the representation [«] of the
linear group given as a symmetric function of the eigenval-

ues, A1, ..., Am,of X by
s )]

s (7]

Note that both the real and complex zonal polynomials
are particular cases of the (general a) Jack polynomials,

Xix)(X) = “)

,(;a) (X), where a = 1 for complex, and o = 2 for real,
zonal polynomials, respectively. In this paper we only con-
sider the complex case; therefore, for notational simplicity
we drop the superscript of Jack polynomials, as was done in

equation (2), i.e., C(X) := ctV (X). Finally, we have

_ 92k 1 Hz<g(2k 2k; —i +7)
Cr(I;) = 2°%k! [2 nL Hi:l(Qki+r—i)! , (5
where
1 /1 _
|:§7’L:| ) = };[1 (E(n -1+ 1))]“

and the partition  of k has r nonzero parts. Here (a); =
a(a + 1)---(a + k — 1). The next theorem gives the
density of quadratic forms on complex random matrices,
S =XAXH,

Theorem 1 Ler X be anm xn (n > m) complex Gaussian
random matrix distributed as X ~ CN (0,1 ® X»), where
31 € C™*™ and %9 € C**™ are positive definite Hermi-
tian matrices. Then the density function of S = XAXH is
given by

1 n—m
1) = CT e (n) (det T )" (det Do A)™ (det 5)
XOF()(M)(B7_E;13)7 (6)

where A € C"*™ is a positive definite Hermitian matrix

and B = A~'2571A-1/2,
Proof. see [7]. O

The distribution of the matrix S is denoted by
CQm.n(A,X1,X5). Special cases of density (6) are:

() If A = I,, then the density of S = XXH# ~
CQm.n(In,X1,X2) is given by

1
S) =
1(5) CTn(n)(det 1) (det Xo)™
xoFg™ (%51, 5719, )
(IfA=1I,% =Yand ¥y = I,, then S = XX is
said to have a Wishart distribution, denoted by CW,,,(n, X),
and its density is given by

1
18) = CT e (n)(det T)"

(det )m—™

(det 8)" ™etr(—=X71S), (8)

where etr(-) = () = exptr(-). The next theorem gives
the joint eigenvalue density of quadratic forms on complex
random matrices.

Theorem 2 Consider the m x m positive definite Hermi-
tian matrix S ~ CQ(A,X1,X2), where A € C"*" is a
positive definite Hermitian matrix. Then the joint density of

the eigenvalues, \y > Ao > -++ > Ay, > 0, 0f Sis
qm(m— 1)(det oA
A= n—m _
FA) CTpn(n)CT detEl H’\ g (e = Ar)*
E;I)CH(A)
x Z Z k'C )C ) 2

where B = A=1/2%714-1/2,

Proof. see [7]. O

Special cases of Theorem 2 are:
(i) If A = I,,, then the joint eigenvalue density of S ~
CQmn(In,E1,%2) is given by

_ wmm (et B9) ™™
! (A)‘crm<n)crm<m)<§etzl)n IR | YRV

-1 k<l
21—1 Cy(A
XZZ k'C ()C (L)n) (@) (10)

k=0 kK
() If A = I,, ¥1 = ¥ and X3 = I,,, then the joint eigen-
value density of the Wishart matrix S is given by

m(m—1)
WCF detE H)‘n mH O — A)?

k<l
xopgm’(—z—l,A). (11)

(i) If A = I,,, 1 = 02I,, and &5 = I, then the joint
eigenvalue density of the Wishart matrix S is given by

) =

m(m 1)

T H/\" mHAk—A,

k<l

X exp (-% Z ,\k> ) (12)

k=1

f)
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In the next section, we use these densities to evaluate the er-
godic channel capacity of MIMO Rayleigh distributed chan-
nels.

3. MIMO CHANNEL CAPACITY

Recently, in response to demand for higher bit rates in wire-
less communications, researchers have exploited the use of
multiple-input, multiple-output (MIMO) systems, as shown
in Figure 1 below. For example, if n = min{n¢, n,}, these
studies show that MIMO uncorrelated Rayleigh distributed
channel achieves almost n more bits per hertz for every 3-
dB increase in signal-to-noise ratio (SNR) compared to a
single-input, single-output (SISO) system, which achieves
only one additional bit per hertz for every 3-dB increase
in SNR, see Telatar [8]. But the channel coefficients from
two different transmitter antennas to a single receiver an-
tenna can be correlated (at the transmitter end with covari-
ance matrix Y;) and/or from a single transmitter antenna to
two different receiver antennas can be correlated (at the re-
ceiver end with covariance matrix X,.). Such channel corre-
lation, which degrades capacity [2], depends on the physical
parameters of the MIMO system and the scatterer charac-
teristics. The physical parameters include the antenna ar-
rangement and spacing, the angle spread, the angle of ar-
rival, etc. One of the objectives of this paper is to evaluate
this capacity degradation for the correlated channel matrix
H ~ CN(0,X, ® X;) with ny > n,. This will be done
by deriving closed-form ergodic capacity formulas for cor-
related channels and their numerical evaluation.

The complex signal received at the jth output can be
written as

e
yi = hijzi +vj, (13)
£

where h;; is the complex channel coefficient between input
¢ and output j, z; is the complex signal at the ¢th input and
v; is complex Gaussian noise, as shown in Figure 1. The
signal vector received at the output can be written as

Y1 hit - hpa x1 vy

Yn,. hin, hnn, Tn, Un,

g

i.e., in vector notation,
y=Hzx +v, (14)

where y,v € C*, H € C**™_and x € C™. The total

power of the input is constrained to p,
E{zHz} <p or tr&{zzt} <p.

We assume that the realization of H is known only to the

X H ................ 141 ............... 7 >—> yl

%, H ! .2.2.".'::-..,:.: O — i ¥,

Fig. 1. MIMO communication system.

receiver but not to the transmitter and power is distributed
equally over all transmitting antennas. Moreover, if we as-
sume a block-fading model and coding over many indepen-
dent fading intervals, then the Shannon or ergodic capacity
of the random MIMO channel is given in [8] by

n {log det <In,, + nﬁHHH) }

Es {logdet ( n. + S)} (15)

where the expectation is evaluated using the density (7), i.e.,
S = HHY ~ CQupn.(In,, Er, 5t). Let Ay > --- > Ay,
be the eigenvalues of S and A = diag(\1,..., A, ). Then
the capacity can also be computed using the joint eigen-
value density f(A) or the single unordered eigenvalue den-

sity f(A), i.e

C =

> e {los+ L}
k=1 v

& log(1+ (p/n)N)}.  (16)

4. COMPUTATION OF THE CAPACITIES

In this section, we evaluate the capacities for both correlated
and uncorrelated 2 x 2 Rayleigh fading channels (i.e., ny =
n, = 2). First, we consider a channel with correlation at
both transmitter and receiver ends, i.e., H ~ CN(0,X, ®
%) and S = HHE ~ CQ,, n,(In,, s, 5¢). The ergodic
capacity is given by

0, = (et Ze) * / ~ OAI dA dr (log [1+§A1]

(det =2 Jg
+ log [1 + B)\z]) (A1 = A2)?
n] E X[n]( I)X[n](A)
X ZZ (ky — k2t+ )T(k1 +2) Tk +1)°

k=0 kK
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In this equation, if we use log, then the capacity is measured
in nats and if we use log, then the capacity is measured in
bits. Thus, one nat is equal to e bits/sec/Hz (e = 2.718...).

Second, we consider a channel with only correlation at
the receiver end, i.e, H ~ CN(0,%, ® I,,) and S =
HHY ~ CW,, (n,%,) is a Wishart matrix. It should
be noted that the joint eigenvalue density of a Wishart ma-
trix depends on the population covariance matrix 3, only
through its eigenvalues, v1,... ,v,,, i.€.,

oF{™) (=21 A) = oF{™) (=1 71,A),
where T = diag(vi,... ,vp,). Letn, = 2and Y71 =
diag(ai, az2). Then we have

1
(a2 —a1)(M — A2)
x [exp {—(a1 A1 + axA2)} —exp {—(a1 A2 + a2)1)}].

oFy? (Y7 A) =

17)

The ergodic capacity is given by

_ 1 * B 2_—a1A _
C. = @) /0 log [1 + 2)\] [afe™ "M (@A — 1)
—aze”Mar A — 1)] dA. (18)

Third, we consider an uncorrelated channel at the transmit-
ter and receiver ends, i.e., H ~ CN(0,02%I,, ® I,,) and
S = HHY ~ CW,, (ny,02I,,). The ergodic capacity is
given by

—o [ Palo=no® [X A 1
cu_2/0 log [1+ 2] e [206 S+ 5| dn
19)

Figure 2 shows the capacity in nats vs signal-to-noise ratio
for a 2 x 2 correlated/uncorrelated Rayleigh fading channel
matrices. In the computation the following parameters are
used 02 = 1 and

1 0.5+ 0.5¢

Yr=%= | 0505 1

From this figure we note the following: (¢) the capacity is
decreasing with channel correlation, (¢7) the capacity is in-
creasing with SNR.

5. CONCLUSION

In this paper, we study quadratic forms on complex ran-
dom matrices and their application. In particular, we de-
rive the densities of these forms and their joint eigenvalue
densities. Using these densities, both correlated and uncor-
related MIMO Rayleigh channel ergodic capacity formulas
are obtained. The capacity of 2 x 2 MIMO Rayleigh channel
matrices are computed for both correlated and uncorrelated
channels. It is shown how the channel correlation degrades
the capacity of the communication systems.

Capacity (in nats)
o
T
Il

I I I
0 5 10 15 20 25
Signal-to-Noise Ratio (in db)

Fig. 2. Capacity vs SNR forn; = 2 and n,, = 2,1i.e.,2 x 2
Rayleigh channel matrix. Note that C\,, C. and C,. denote
the capacity of uncorrelated, correlated at the receiver end
and correlated at both transmitter and receiver ends, respec-
tively.
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