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ABSTRACT
Quadratic forms on complex random matrices and their
joint eigenvalue densities are derived with the goal of
studying the ergodic channel capacity of multiple-input,
multiple-output (MIMO) Rayleigh distributed wireless
communication channels. We consider MIMO channels
which are correlated at the transmitter and/or the receiver
ends and evaluate the corresponding ergodic capacity for-
mulas. These formulas are expressed in terms of complex
zonal polynomials. This study shows how channel correla-
tion degrades the capacity of the communication systems.

1. INTRODUCTION

Let an � � � complex Gaussian random matrix
�

be dis-
tributed as

� � 	 � 
 � � � � � � � �
with mean � � � � ! �

and covariance " $ & � � � ! � � � � �
, where

� � + - / 1 /
and

� � + - 5 1 5
are positive definite Hermitian matrices.

Then the quadratic form on
�

associated with the positive
definite Hermitian matrix 7 is defined by8 ! � 7 � ; =
Here, we study the distribution of

8
, denoted by	 ? / A 5 
 7 � � � � � � �

, and its application to information the-
ory. We also derive the joint eigenvalue density of

8
, which

is represented by complex zonal polynomials (also called
Schur polynomials). Complex zonal polynomials are sym-
metric polynomials in the eigenvalues of a complex matrix
[5], and they enable us to represent the derived densities as
infinite series.

The theory of quadratic forms on complex random ma-
trices is used to evaluate the capacity of MIMO wireless
communication systems. Note that the capacity of a com-
munication channel expresses the maximum rate at which
information can be reliably conveyed by the channel [1].
Let us denote the number of inputs (or transmitters) and
number of outputs (or receivers) of the MIMO wireless
communications system by � D and � E , respectively, and as-
sume that the channel coefficients are distributed as com-
plex Gaussian and correlated at both the transmitter and the

receiver ends. Then the MIMO channel can be represented
by an � E � � D complex random matrix F � 	 � 
 I � � E � � D �

,
where

� E and
� D represent the channel correlation at the re-

ceiver and transmitter ends, respectively. If
� E ! L � N 5 P

(or
N 5 P ) and

� D ! N 5 R (or
L � N 5 R ) then the channel is called

uncorrelated Rayleigh distributed channel. The information
processed by this random channel (or mutual information
of this random channel) is a random quantity which can be
measured in two different ways, namely, ergodic capacity
(or average mutual information) and capacity versus outage
(or S percent outage). Note that the S percent outage is
defined to be the minimum mutual information that occurs
in all but S percent of the instantiations of the channel. In
the sequel, we show that the ergodic capacity can be rep-
resented by quadratic forms on complex random matrices,8 ! � � ;

(i.e., 7 ! N 5 ), which can be computed by means
of the eigenvalue density of

8
. This is the motivation behind

this study.
This paper is organized as follows. Quadratic forms on

complex random matrices are studied in Section 2. The ca-
pacity of a MIMO channel and the computational method
are given in Sections 3 and 4, respectively.

2. QUADRATIC FORMS ON RANDOM MATRICES

In this section, the densities of quadratic forms on complex
random matrices are given and their joint eigenvalue den-
sities are derived. The probability distributions of random
matrices are often derived in terms of hypergeometric func-
tions of matrix arguments. In the sequel, we need to use the
following complex hypergeometric function of two matrix
arguments,

T U W / YT 
 [ � ^ � ! bc
d e T

c
f

g f 
 [ � g f 
 ^ �
h i g f 
 N 5 � �

(1)

where
[ + - / 1 /

,
^ + - 5 1 5

and � m � . Moreover,o ! 
 h � � = = = � h / �
denotes a partition of the integer

h
withh � m s s s m h / m �

and
h ! h � v s s s v h / and w f

denotes summation over all partitions o of
h
. The complex
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zonal polynomial,
� � � � �

, of a complex matrix
�

defined
in [3] is � � � � � � 
 � � 
 � � � 
 � � 
 � � � �

(2)

where

 � � 
 � � �

is the dimension of the representation � � � of
the symmetric group given by


 � � 
 � � � � � � � � ! " � �  $ � " $ & ' ) �
� � + , � �  ' - $ & � � (3)

and

 � � 
 � � �

is the character of the representation � � � of the
linear group given as a symmetric function of the eigenval-
ues, / , � 2 2 2 � / � , of

�
by


 � � 
 � � � � 4 5 6 8 9 / : < = � > " ? A
4 5 6 8 9 / � > " ? A 2

(4)

Note that both the real and complex zonal polynomials
are particular cases of the (general C ) Jack polynomials,� D F G� � � �

, where C � �
for complex, and C � J

for real,
zonal polynomials, respectively. In this paper we only con-
sider the complex case; therefore, for notational simplicity
we drop the superscript of Jack polynomials, as was done in
equation (2), i.e.,

� � � � � L � � D , G� � � �
. Finally, we have

� � � N O � � J Q : � � S �J T U � � V ! " � J �  $ J � " $ & ' ) �
� V + , � J �  ' Y $ & � � �

(5)

where S �J T U � � VZ + , \ �J � T $ & ' � � ^ : `
and the partition � of

�
has

Y
nonzero parts. Here

� a � : �a � a ' � � b b b � a ' � $ � �
. The next theorem gives the

density of quadratic forms on complex random matrices,d � f g f h
.

Theorem 1 Let
f

be an - j T � T k - �
complex Gaussian

random matrix distributed as
f n p r � t � v , y v Q �

, wherev , | } � � �
and

v Q | } O � O
are positive definite Hermi-

tian matrices. Then the density function of
d � f g f h

is
given by� � � � � �p � � � T � � 4 5 6 v , � O � 4 5 6 v Q g � � � 4 5 6 � � O > �

j � � D � G� � � � $ v > ,, � � �
(6)

where g | } O � O
is a positive definite Hermitian matrix

and
� � g > , � Q v > ,Q g > , � Q

.

Proof. see [7]. �
The distribution of the matrix

d
is denoted byp � � � O � g � v , � v Q �

. Special cases of density (6) are:

(i) If g � N O , then the density of
d � f f h np � � � O � N O � v , � v Q �

is given by� � � � � �p � � � T � � 4 5 6 v , � O � 4 5 6 v Q � � � 4 5 6 � � O > �
j � � D � G� � v > ,Q � $ v > ,, � � 2

(7)

(ii) If g � N O ,
v , � v

and
v Q � N O , then

d � f f h
is

said to have a Wishart distribution, denoted by
p � � � T � v �

,
and its density is given by� � � � � �p � � � T � � 4 5 6 v � O � 4 5 6 � � O > � 5 6 � � $ v > , � � �

(8)

where 5 6 � � b � � � � � D � G � 5 �   6 � � b �
. The next theorem gives

the joint eigenvalue density of quadratic forms on complex
random matrices.

Theorem 2 Consider the - j - positive definite Hermi-
tian matrix

d n p � � g � v , � v Q �
, where g | } O � O

is a
positive definite Hermitian matrix. Then the joint density of
the eigenvalues, / , ¥ / Q ¥ b b b ¥ / � ¥ t

, of
d

is� � § � � ¨ � D � > , G � 4 5 6 v Q g � > �p � � � T � p � � � - � � 4 5 6 v , � O �Z: + , / O > �: �Z: ! © � / : $ / © � Q
j ª«: + � « �

� � � � � � � � $ v > ,, � � � � § �� � � � � N O � � � � N � � �
(9)

where
� � g > , � Q v > ,Q g > , � Q

.

Proof. see [7]. �
Special cases of Theorem 2 are:

(i) If g � N O , then the joint eigenvalue density of
d np � � � O � N O � v , � v Q �

is given by

� � § � � ¨ � D � > , G � 4 5 6 v Q � > �p � � � T � p � � � - � � 4 5 6 v , � O �Z: + , / O > �: �Z: ! © � / : $ / © � Q
j ª«: + � « �

� � � v > ,Q � � � � $ v > ,, � � � � § �� � � � � N O � � � � N � � 2
(10)

(ii) If g � N O ,
v , � v

and
v Q � N O , then the joint eigen-

value density of the Wishart matrix
d

is given by

� � § � � ¨ � D � > , G � 4 5 6 v � > Op � � � T � p � � � - � �Z: + , / O > �: �Z: ! © � / : $ / © � Q
j � � D � G� � $ v > , � § � 2

(11)

(iii) If g � N O ,
v , � ¬ Q N � and

v Q � N O , then the joint
eigenvalue density of the Wishart matrix

d
is given by

� � § � � ¨ � D � > , G � ¬ Q � > O �p � � � T � p � � � - � �Z: + , / O > �: �Z: ! © � / : $ / © � Q
j 5 �   ¯ $ �¬ Q �«: + , / : ° 2

(12)
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In the next section, we use these densities to evaluate the er-
godic channel capacity of MIMO Rayleigh distributed chan-
nels.

3. MIMO CHANNEL CAPACITY

Recently, in response to demand for higher bit rates in wire-
less communications, researchers have exploited the use of
multiple-input, multiple-output (MIMO) systems, as shown
in Figure 1 below. For example, if � � � � � � � 
 � � 
 �

, these
studies show that MIMO uncorrelated Rayleigh distributed
channel achieves almost � more bits per hertz for every 3-
dB increase in signal-to-noise ratio (SNR) compared to a
single-input, single-output (SISO) system, which achieves
only one additional bit per hertz for every 3-dB increase
in SNR, see Telatar [8]. But the channel coefficients from
two different transmitter antennas to a single receiver an-
tenna can be correlated (at the transmitter end with covari-
ance matrix

� 
 ) and/or from a single transmitter antenna to
two different receiver antennas can be correlated (at the re-
ceiver end with covariance matrix

� 
 ). Such channel corre-
lation, which degrades capacity [2], depends on the physical
parameters of the MIMO system and the scatterer charac-
teristics. The physical parameters include the antenna ar-
rangement and spacing, the angle spread, the angle of ar-
rival, etc. One of the objectives of this paper is to evaluate
this capacity degradation for the correlated channel matrix� � � � � � � � 
 � � 
 �

with � 
 � � 
 . This will be done
by deriving closed-form ergodic capacity formulas for cor-
related channels and their numerical evaluation.

The complex signal received at the
!
th output can be

written as " # � $ %& ' ( ) + ' # - ' . / # �
(13)

where + ' #
is the complex channel coefficient between input0

and output
!
, - '

is the complex signal at the
0
th input and/ #

is complex Gaussian noise, as shown in Figure 1. The
signal vector received at the output can be written as123 " )

...

" $ 4 6 89 � 123 + ) ) ; ; ; + $ % )
...

...
...+ ) $ 4 ; ; ; + $ % $ 4 6 89 123 - )

...- $ % 6 89 . 123 / )
.../ $ 4 6 89 �

i.e., in vector notation,
" � C - . / �

(14)

where

" � / F H $ 4
,

C F H $ 4 M $ %
, and - F H $ %

. The total
power of the input is constrained to P ,Q � - S - � U P or V W Q � - - S � U P Z
We assume that the realization of � is known only to the

+

+

+

x[ 1

x[ 2
\

v1

v2

y] 2
\

nx̂
[

t_

y] 1

y] n^ r

vn^ r

h11

h12 h21

h2
\
2

h2nr`
hn^ 1t_

hn^ 2t_ hn^ nt_ r

h1nr`
Fig. 1. MIMO communication system.

receiver but not to the transmitter and power is distributed
equally over all transmitting antennas. Moreover, if we as-
sume a block-fading model and coding over many indepen-
dent fading intervals, then the Shannon or ergodic capacity
of the random MIMO channel is given in [8] bya � Q b c e g h i j V m n $ 4 . P� 
 � � S p q� Q s c e g h i j V m n $ 4 . P� 
 v p q �

(15)

where the expectation is evaluated using the density (7), i.e.,v � � � S � � y $ 4 z $ % � n $ % � � 
 � � 
 �
. Let { ) | ; ; ; | { $ 4

be the eigenvalues of
v

and
} � i � � h � { ) � Z Z Z � { $ 4 �

. Then
the capacity can also be computed using the joint eigen-
value density

� � } �
or the single unordered eigenvalue den-

sity
� � { �

, i.e.,a � $ 4&� ( ) Q � � c e g h � � . P� 
 { � � q� � 
 Q � � e g h � � . � P � � 
 � { � � Z
(16)

4. COMPUTATION OF THE CAPACITIES

In this section, we evaluate the capacities for both correlated
and uncorrelated

� � �
Rayleigh fading channels (i.e., � 
 �� 
 � �

). First, we consider a channel with correlation at
both transmitter and receiver ends, i.e., � � � � � � � � 
 �� 
 �

and
v � � � S � � y $ 4 z $ % � n $ % � � 
 � � 
 �

. The ergodic
capacity is given bya � � � � i j V � 
 � � �� i j V � 
 � � � �� � � �� � { � � { ) � e g h � � . P � { ) �. e g h � � . P � { � �   � { ) ¡ { � � �� �&� ( � & ¢ £ ¥ ¢ ¦ � � � )
 � £ ¥ ¢ ¦ � ¡ � � )
 � £ ¥ ¢ ¦ � } �� « ) ¡ « � . � � ® � « ) . � � ® � « � . � � Z
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In this equation, if we use � � � � then the capacity is measured
in nats and if we use � � � �

then the capacity is measured in
bits. Thus, one nat is equal to

�
bits/sec/Hz

� � 
 � � � � � � � � �
.

Second, we consider a channel with only correlation at
the receiver end, i.e., � � � � � � � ! " # $ % & �

and
' 


� � ) � � * % + � , - � ! " �
is a Wishart matrix. It should

be noted that the joint eigenvalue density of a Wishart ma-
trix depends on the population covariance matrix

! " only
through its eigenvalues, � / � � � � � � % + , i.e.,

2 3 4 % + 52 � 6 ! 7 /" � 9 	 
 2 3 4 % + 52 � 6 � 7 / � 9 	 �
where

� 
 = > @ � � � / � � � � � � % + �
. Let , " 
 �

and
� 7 / 


= > @ � � B / � B � �
. Then we have

2 3 4 � 52 � 6 � 7 / � 9 � 
 �� B � 6 B / � � I / 6 I � � (17)

J K L M N O 6 � B / I / P B � I � � R 6 L M N O 6 � B / I � P B � I / � R S �
The ergodic capacity is given by

T V 
 �� B � 6 B / � W X2 � � � Y � P [ � I \ � B � / � 7 � ] ^ � B � I 6 � �
6 B �� � 7 � � ^ � B / I 6 � � � _ I �

(18)

Third, we consider an uncorrelated channel at the transmit-
ter and receiver ends, i.e., � � � � � � � b � $ % + # $ % & �

and' 
 � � ) � � * % + � , - � b � $ % + �
. The ergodic capacity is

given by

T � 
 � W X2 � � � Y � P [ � I \ � 7 ^ g � � h I �
� b �

6 Ib � P �b � i _ I �
(19)

Figure 2 shows the capacity in nats vs signal-to-noise ratio
for a

� J �
correlated/uncorrelated Rayleigh fading channel

matrices. In the computation the following parameters are
used

b � 
 �
and

! " 
 ! - 
 h � k � � P k � � mk � � 6 k � � m � i �
From this figure we note the following:

� m �
the capacity is

decreasing with channel correlation,
� m m �

the capacity is in-
creasing with SNR.

5. CONCLUSION

In this paper, we study quadratic forms on complex ran-
dom matrices and their application. In particular, we de-
rive the densities of these forms and their joint eigenvalue
densities. Using these densities, both correlated and uncor-
related MIMO Rayleigh channel ergodic capacity formulas
are obtained. The capacity of

� J �
MIMO Rayleigh channel

matrices are computed for both correlated and uncorrelated
channels. It is shown how the channel correlation degrades
the capacity of the communication systems.

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

10

Signal−to−Noise Ratio (in db)

C
ap

ac
ity

 (
in

 n
at

s)

C
u

C
c

C
cc

Fig. 2. Capacity vs SNR for , - 
 �
and , " 
 �

, i.e.,
� J �

Rayleigh channel matrix. Note that
T �

,
T V

and
T V V

denote
the capacity of uncorrelated, correlated at the receiver end
and correlated at both transmitter and receiver ends, respec-
tively.
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