
KALMAN-FILTER CHANNEL ESTIMATOR FOR OFDM SYSTEMS IN TIME AND
FREQUENCY-SELECTIVE FADING ENVIRONMENT

Wei Chen and Ruifeng Zhang

Dept. of Electrical & Computer Eng.,
Drexel University, Philadelphia, PA 19104

email: rzhang@ece.drexel.edu

ABSTRACT

We present a Kalman-filter method for the estimation of
time-frequency-selective fading channels in OFDM systems.
Based on the Jakes model, an auto-regressive (AR) model of
the channel dynamics is built. To reduce the complexity of
the high-dimensional Kalman filer for joint estimation of the
subchannels, we propose to use a low-dimensional Kalman
filter for the estimation of each subchannel. Then, a min-
imum mean-square-error (MMSE) combiner is used to re-
fine the Kalman estimates. The per-subchannel Kalman es-
timator explores the time-domain correlation of the channel,
while the MMSE combiner explores the frequency-domain
correlation. This two-step solution offers a performance
comparable to the much more complicated joint Kalman es-
timator.

1. INTRODUCTION

Orthogonal frequency division multiplex (OFDM) is an ef-
fective technique for combating frequency-selective fading
channels in wireless communication systems, e.g., [1]. Be-
ing a multicarrier modulation scheme, OFDM divides the
overall frequency band into a number of subband and trans-
mits a low-rate data stream in each subband. This way,
a wideband frequency-selective channel is converted to a
number of parallel narrow-band flat-fading subchannels which
are free of intersymbol interference (ISI). In addition, OFDM
allows overlap of the subchannels but keeps the orthogonal-
ity of the subcarriers. Therefore, high spectral efficiency is
achieved.

For coherent detection of the information symbols, reli-
able estimation of the gain of each subchannel in the OFDM
system is crucial. This problem is further complicated by
the time-varying nature of the channel fading and the cor-
relation between the subchannels due to Doppler frequen-
cies. A minimum mean-square-error (MMSE) channel es-
timator has been proposed in [2]. It uses only the corre-
lation of the channel in frequency domain (i.e., the corre-
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lation between subchannels) and fails to address the time-
domain dynamics. Instead, it assumes a quasi-static chan-
nel over at least tens of OFDM symbols. Li, Cimini and
Sollenberger [3] have proposed another MMSE channel es-
timator in which coarse channel estimates from several suc-
cessive OFDM symbols are further combined optimally in
the MMSE sense to get an updated channel estimate. In
that method, the time-domain together with the frequency-
domain correlation of the channel is used to get the opti-
mal combining coefficients. However, the initial coarse es-
timates are obtained independently from each OFDM sym-
bol to another without taking advantage of the time dynam-
ics of the channel. There are also many blind methods for
estimating OFDM channels [4–9]. They either work in a
symbol-by-symbol manner or need statistics over a block of
OFDM symbols. Though the former ones can deal with fast
time-varying channels, the information of the time-domain
correlation is not utilized.

In this paper, we develop a state-space model for the
OFDM system in a time-frequency-selective fading chan-
nel environment based on Jakes’ channel fading model [10].
We propose to use Kalman filter to estimate and track the
channel. To reduce the dimension of the Kalman filter, we
further propose a structure which uses a (low-dimensional)
Kalman-filter estimator for each subchannel and a linear
combiner to refine the estimate of each subchannel. The per-
subchannel Kalman-filter only explores the time-domain cor-
relation of each subchannel, while the linear combiner is op-
timized in the MMSE sense based on the frequency-domain
correlation between subchannels.

2. SIGNAL MODEL

We consider a standard OFDM system in which the infor-
mation symbols are grouped into blocks and inverse discrete
Fourier transform (IDFT) is performed on each block and
cyclic prefix (CP) added before they are fed into the modu-
lator and transmitted. At the receiver, DFT is performed on
each received OFDM symbol after the CP is removed. With
proper CP extensions, carrier synchronization and sample
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timing of tolerable leakage, the sample from the kth subcar-
rier for the nth OFDM symbol is

yk[n] = Hk[n]sk[n]+wk[n], k = 1, . . . , N,−∞ < n < ∞,
(1)

where sk[n] is the kth information symbol of the nth OFDM
symbol, Hk[n] is the gain of the kth subchannel during the
nth OFDM symbol, wk[n] is the noise, and N is the to-
tal number of the subcarriers. In our studies, we assume
that sk[n] is drawn from a BPSK constellation {−1,+1}
independently for different k and n, and wk[n] is a circu-
lar Gaussian random variable with zero mean and variance
σ2

w and i.i.d for different k and n. We also assume that the
channel is Rayleigh fading and we use Jakes’ model [10]
for the power spectral density and Doppler spectrum of the
fading process. Specifically, we have the correlation of the
channel gain Hk[n]s as

rk,l[m] = E {Hk[n]H∗
l [n − m]}

= J0(2πfdmT )
1 − j2π(l − k)σt/T

1 + 4π2(l − k)2σ2
t /T 2

, (2)

where fd is the maximum Doppler frequency, σt the maxi-
mum delay spread of the channel and T the OFDM symbol
duration, and J0(·) is the zeroth-order Bessel function of the
first kind.

It is known that the dynamics of Hk[n]s can be well
modeled by an auto-regressive (AR) process. Define h[n] :=
[H1[n], . . . ,HN [n]]T . An pth-order AR model for h[n] is
presented as

h[n] = −
p∑

i=1

A[i]h[n − i] + Qu[n] , (3)

where A[1], . . . ,A[p] and Q are N×N matrices and u[n] is
an N×1 vector white Gaussian process. A[1], . . . ,A[p] and
Q are the model parameters which are obtained by solving
a Yule-Walker equation using rk,l[m] in (2).

Based on the AR model of the channel, a state-space
model for the OFDM system can be built. By defining
x[n] := [hT [n], . . . ,hT [n − p + 1]]T , we have

x[n] = Cx[n − 1] + Gv[n] (4)

which is the state equation with v[n] being the white Gaus-
sian process noise. The matrices C and G are defined as

C :=

⎡
⎢⎢⎢⎣

−A[1] −A[2] . . . −A[p]
IN 0N . . . 0N

. . .
0N . . . IN 0N

⎤
⎥⎥⎥⎦ ,

G := [Q,0K , . . . ,0K ]T ,

and IN and 0N are N × N identity matrix and all-zero
matrix, respectively. The observation equation of the state-
space model is a vector version of (1):

y[n] = D[n]x[n] + w[n] , (5)

where y[n] := [y1[n], . . . ,yN [n]]T , D := [S[n],0N , . . . ,0N ],
w[n] := [w1[n], . . . , wN [n]]T and S[n] is an N × N diag-
onal matrix with sk[n] being its kth diagonal entry.

3. VECTOR KALMAN CHANNEL ESTIMATOR

The state-space model of (4) and (5) allows us to use Kalman
filter to adaptively track the channel gain Hk[n]. The algo-
rithm is standard and is given below.

1. Initialize the Kalman Filter with x[0] = 0pN and Σ0 =
Σ, where Σ is the stationary covariance of x[n] and
can be computed analytically from (2).

2. For each n, do the Kalman Filter update according to

Mn = CΣn−1C
H + GGH ,

Γt = D[n]MnDH [n] + σ2
wIN ,

Kn = MnDH [n]Γ−1
n ,

x[n] = Cx[n − 1] + Kn(y[n] − D[n]Cx[n − 1]),

Σn = (IpN − KnDn)Mn−1.

3. Channel estimate at instance n is

ĥ[n] = [IN ,0N , . . . ,0N ]x[n]. (6)

Noted that the algorithm needs the information symbol sk[n]s,
so is working in the training or decision-feedback mode.

The vector Kalman-filter algorithm gives the optimal
linear estimate of the channel. Its drawback is the high com-
plexity. Considering that the dimension of the state vector
is pN which can be significantly high when there are large
number of subcarriers.

4. PER SUBCARRIER KALMAN ESTIMATOR
WITH MMSE COMBINER

One solution to reduce the complexity of the Kalman-filter
channel estimator is to implement it at a per-subchannel
fashion. Consider the kth subchannel gain Hk(n). It can
be modeled as an one-dimensional AR process:

Hk[n] = −
p∑

i=1

aiHk[n − i] + σuk[n] , (7)

where the model parameter a1, . . . , ap and σ can be com-
puted from the correlation rk,k(0) of (2) according to a Yule-
Walker equation. Noted that these parameters does not have
index k. This is because all the subcarriers has the same
statistics and fit in the same AR model. This may greatly
simplify the channel estimator for many components are
shared by the estimator for each subchannel.
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Follow the similar procedure as that of the previous sec-
tion, we obtain the state-space model for the kth subchannel
as

xk[n] = Cxk[n − 1] + gvk[n] , (8)

yk[n] = dk[n]x[n] + wk[n] , (9)

where xk[n] = [Hk[n], . . . ,Hk[n−p+1]]T , g = [σ, 0, . . . , 0],
dk = [sk[0], 0, . . . , 0], and

C =

⎡
⎢⎢⎣

−a1 −a2 . . . −ap

1 0 . . . 0
. . .

0 . . . 1 0

⎤
⎥⎥⎦ .

In the equation above, we have recycled the variables C
from (4) just for sake of uniformity.

The Kalman filter for the model of (8) is a p-dimensional
one which is much simpler. We present it as follows.

1. Initialize the Kalman Filter with xk[n] = 0p and Σk,0 =
Σ, where Σ is the stationary covariance of xk[n] and
can be computed analytically from (2).

2. For each n, do the Kalman Filter update according to

Mn = CΣn−1C
H + ggH ,

γk,n = dk[n]MndH
k [n] + σ2

w,

Kk,n = MndH
k [n]/γk,n,

xk[n] = Cxk[n − 1] + Kk,n(yk[n] − dk[n]Cxk[n − 1]),

Σ,n = (Ip − Kk,ndk[n])Mn−1.

3. Channel estimate at instance n is

Ĥk[n] = [1,0, . . . ,0]xk[n]. (10)

However, the per-subcarrier Kalman filter only explores
the time-domain correlation of the channel fading and fails
to take advantage of the frequency-domain correlation. There-
fore, further improvement of the estimates of (10) is possi-
ble. Our proposal is to introduce a linear combiner to com-
bine Ĥ1[n], . . . , ĤN [n] to refine them. Specifically, the re-
fined channel estimate is

ȟ[n] = T h̃[n] , (11)

where h̃[n] = [Ĥ1[n], . . . , ĤN [n]]T and T is the combining
matrix. We optimize T in an MMSE sense, that is

T = arg min E[‖h[n] − ˇh[n]‖2]
= arg min E[‖h[n] − T h̃[n]‖2]

= E[h[n]h̃
H

[n]]{E[h̃[n]h̃
H

[n]]}−1 . (12)

Since h̃ is the estimate of h[n] from the Kalman filter in
(10), we can write

h̃[n] = h[n] + e[n] , (13)
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Fig. 1. Block diagram of Kalman-filter channel estima-
tor for OFDM systems: (a) Vector Kalman-filter; (b) Per-
subcarrier Kalman-filter with MMSE combiner

where e[n] is the estimation error which is zero-mean Gaus-
sian and independent of h[n]. The covariance matrix of e[n]
(also the covariance matrix h[n]) P = E[e[n]e[n]H ] is a
diagonal matrix with the kth diagonal entry being the co-
variance of Ĥk[n] in (10), which can be obtained from the
Kalman filter updating procedure:

P (i, i) = [1, 0, . . . , 0]Σk,n[1, 0, . . . , 0]T , (14)

i.e, P (i, i) is the (1, 1)st entry of Σk,n. Consequently, we
have

E[h[n]h̃
H

[n]] = E[h[n]hH [n]] = R[0] ,

E[h̃[n]h̃
H

[n]] = R[0] + P , (15)

where R[0] is an N ×N matrix with its (l, k) being rl,k(n)
of (2). The expression

T = R[0](R[0] + P )−1 (16)

then follows.
The block diagram of the per-subcarrier Kalman esti-

mator with MMSE combiner is presented in Fig. 1(b), as
against the vector Kalman-filter estimator in (a).

5. SIMULATIONS

In this section, we provide computer simulation results to
demonstrate the performance of the algorithms discussed
above. We consider an OFDM system with the parameters
below:

Number of sub-carriers 16
Frequency separation ∆f 1.76 KHz
Maximum delay spread σT 25 µs
Maximum Doppler shift fD 80 Hz
AR model order for OFDM System 2
AR model order for each subcarrier 2
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Note that σT /T = 0.044, fDT = 0.045. This OFDM sys-
tem satisfies the assumptions made before.

Figure 2 shows the mean square error (MSE) of the
channel estimation of the two Kalman-filter channel estima-
tor versus the received signal-to-noise ratio (SNR). To drive
the Kalman filter, 10 training OFDM symbols are used; and
after that the system switches to decision-feedback mode.
The MSE is the average of the channel estimation for 100
OFDM symbols after the training. Figure 3 shows the bit-
error-rate (BER) versus the received SNR when the esti-
mated channel is supplied to the coherent detector. The
BER is again the average of the transmission of 100 OFDM
symbols after 10 trainings.

From the figures we see that the proposed per-subcarrier
Kalman filter with MMSE combiner offers comparable per-
formance to the much more complicated vector Kalman fil-
ter

6. CONCLUSION

We proposed a Kalman-filter solution for the estimation of
OFDM channels in a time-frequency-selective fading envi-
ronment. Though the method is a two-step solution: filter-
ing in time and frequency domain successively, the perfor-
mance of it is comparable to the much more complicated
joint Kalman estimator. The behind reason may be that the
time and frequency components of the Jakes’ model in (2)
is separable in nature.
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Fig. 2. Normalized channel estimate error of the Kalman-
filter Estimators
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Fig. 3. Bit-error rate of the Kalman-filter Estimators
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