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Abstract— We present an OFDM frequency synchronization
scheme. The scheme uses periodic OFDM symbols, similarly
to the algorithms proposed previously by Morelli and Mengali
[8] and Schmidl and Cox [6]. The proposed scheme attains
considerably higher accuracy than the scheme by Schmidl and
Cox requiring a similar computational load. Compared to the
scheme by Morelli and Mengali, the proposed algorithm attains
a somewhat inferior accuracy but at a significantly reduced
computational complexity, i.e O(N) versus O(N?) operations
for N-tone OFDM. In addition to that, the scheme proposed
here is considerably less sensitive to the accuracy of the involved
computations than the other two schemes.

1. INTRODUCTION

Orthogonal frequency division multiplexing is a commu-
nication technique with a long history [1], [2], [3] which is
rapidly emerging as a technology of choice in wireless applica-
tions. International standards such as IEEE 802.11 are employ-
ing OFDM for wireless LAN and other nomadic applications.
For mobility applications, OFDM is also a contender for
being the technology of choice for fourth generation systems.
For wireless applications, an OFDM-based system can be of
particular interest because it provides a greater immunity to
impulse noise and fast fades and facilitates equalization, while
efficient hardware implementations can be realized using FFT
techniques. The emergence of OFDM has also motivated a
revival of research activities on various implementation issues
including the problem of time and frequency estimation.

The problem of frequency synchronization for OFDM
has been extensively studied in the literature. We focus on
methods that estimate frequency offset using a pilot sequence.
In this direction, a number of ideas have been previously
proposed by Moose [4], Van de Beek et al. [5], Schmidl
and Cox [6], Miiller-Weinfurtner [7], Morelli and Mengali
[8], and Song et al. [9] and others. These schemes provide
various trade-offs between performance and complexity. For
instance, the method of Schmidl and Cox is very simple
to implement but performs far from the theoretical limits.
In contrast, Morelli and Mengali propose an algorithm the
accuracy of which is very close to theoretical limits; that is,
however, paid by a considerable increase in computational
complexity. Other implementation issues such as robustness
to computation errors and quantization effects are also of
importance when designing an OFDM physical layer.
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In this paper, we present a new frequency synchronization
scheme for OFDM that attains a close-to-optimal performance
at a low computational complexity. The new scheme is also
more robust to computational inaccuracies and quantization
errors than the schemes proposed by Schmidl and Cox [6]
and Morelli and Mengali [8].

II. THE SYSTEM MODEL

In OFDM, the coded input symbol sequence a[i], i =
0,1,..., is the input to a serial to parallel device with N
outputs. At each time [ = 0,1,2,..., the output a[l] at port
k=0,1,---,N —1is given by ax[l] = a[lN + k]. The output
of the serial-to-parallel multiplexer is the input to an IFFT
device whose output at time / is given by

N-1
bin] = (1/N) Y ap[le®™ /N 0<n<N. (1)
k=0
The output of the IFFT device is then put into serial form using
a parallel-to-serial multiplexer to which then a cyclic prefix of
length G is appended. Thus, the sequence s;[n], -G <n < N
that is the output of the cyclic extension device is given by:
sin] = B[N +n],-G < n <0, sn] = H[n],0 <n < N.
Windowing is then performed and the resulting sequence is
input to a digital-to-analog converter and the transmit chain.
At the receiver, the received signal is first down-converted
and at this point a coarse time and frequency synchronization
is performed, following which the output is digitized and
the cyclic extension is removed. Following serial-to-parallel
conversion, an FFT operation is performed and the output
is put back into serial form. This produces the input to
the decoder whose function is to recover the transmitted bit
sequence.

If the cyclic prefix is longer than the channel impulse
response and time/frequency synchronization is perfect, the
intersymbol interference in time domain is completely elim-
inated. However, due to the poor frequency localization of
the modulating complex exponentials, even relatively minor
frequency offset may cause considerable inter-carrier interfer-
ence.

Assuming lack of perfect frequency synchronization, the
received sequence is given by

L1
ri[n] = 2 (Jonetfentfene) Z siln—ilhi+w, ,0<n <N,

i=0
@
where fo and f. are the carrier frequency and the frequency
offset, respectively, normalized by the sampling frequency, n .
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is the timing mismatch normalized by the sampling interval,
ho,h1,...,hr_1 is the impulse response of the channel, and
wy, is the additive noise. Given that coarse time and frequency
synchronization is performed, it can be assumed that n. < 1.

III. FREQUENCY SYNCHRONIZATION

In non-blind schemes, estimates of the frequency offset f.
and the timing mismatch n. are evaluated from the observed
vector r,, 0 < n < N, as given in (2), which corresponds to
a known pilot sequence s,,, 0 <n < N.!

Consider using a periodic test sequence of the form

SnK+i:Si,0§i<K,0§n<N/K.

Assuming that the cyclic prefix extension is longer that
the channel impulse response, the corresponding received
sequence is also periodic (apart from the noise component)
and is given by:

Pakcyi = tie/OTITIOEED) gy e 3)
0<i<K-1,0<n<N/K-1,
where t; = ‘Ef;ol Si—khy|, and ¢; = 2w (fone + fene) +

arg (Zf;ol Si—k hk) . Cramer-Rao bound for frequency offset
estimation from such a received sequence can be show to be

E(|f. - f.) >3@2m%smN(N - K)(N+ K)) ', 4
where snr = (Zfigl tf) /Ko?. Shorter periods K attain
lower bounds and vice versa. The best estimation performance
is achieved with K = 1, however, this case is disadvantageous
in terms of frame synchronization, so one needs to consider
K > 2. In the other extreme case, K = N, the corresponding
Fisher information matrix becomes singular.

Frequency offset f. and phase angles ¢g,...,¢x_1 can
be determined by minimizing the square error between the
phase angles of the observed symbols, arg(r ki) = Qnk+i
and their respective values arg(r,x+;) = ¢; + 2nfc(nK +
i) in the case when there is no noise in the channel. The
corresponding error function is given by

K—-1N/K-1
=3 (anksi—di —2nf(nK +0)* . (5
=0 n=0

The minimization of this error function with respect to f. and
0,01, - - -, PKr—1 yields our frequency offset estimator:
K—-1N/K-1
fo=C1> Y (-N+K+2Kn)agnsi , (6)
=0

n=0

where C1 = 3/7N(N — K)(N + K). Note that the expected
value of apk+; can be shown to be

E(ank i) = E(arg(rnx i) = ¢i +2nf(nK +1i) , (7)

"From now on, we omit frame index [ and use 7y, and s, to denote 7;[n]
and s;[n], respectively.

hence, the proposed procedure yields unbiased estimates of the
frequency offset and the phase angles ¢;. Observe also that f.
is determined from (5) by estimating the average slope of the
increase of a, i +; in n and that slope is equal to 27 K f.. The
range of the proposed frequency offset estimator is therefore
fe < m/K, which is sufficient for state-of-the-art oscillators
and considered OFDM sampling frequencies. However, phase
angles o, k+; may fall outside of the range (—m,w) due
to their evolution caused by the frequency offset or due to
the additive noise. This phase warping effect degrades the
performance of the proposed algorithm and we discuss some
methods of dealing with it in the implementation section of
the paper.

I'V. PERFORMANCE ANALYSIS

The remaining error of the proposed frequency offset
estimator has the form

N/K-1 K—1
fe=fe=0C0 Y (“N+EK+2Kn) Y Oxnsi, ()
n=0 i=0

where d,, are zero-mean noise components. It follows that the
variance of this estimator is

B(lfe = fP) =38 (NN - K)(N+K) ", )
where 62 = E(|0,]?).

This expression is valid for any uncorrelated zero-mean
perturbation ¢§,,, and we will use it also to assess the effects
of computational errors on the estimation accuracy. If §,, are
noise components, their variance can be found by observing
that

= | sin (arg(‘t"—"))
d, = arctan - - (10)
1+ "f—: cos (arg(lt”—""))

From this expression it can be further shown that E(|6,|?) =
1/(2snr), which finally gives

E(|f. - f.]?) =3/ (27> N(N = K)(N + K)sur) ' . (11)

Hence, our estimator is asymptotically efficient.

The proposed synchronization algorithm, as well as previ-
ously studied frequency offset estimators, involve calculation
of the argument of a complex number. Assuming that the
quantization errors made in determining angles « gp4; in
expression (6) are zero-mean and independent, the variance of
the frequency estimator due to the quantization error is also
given by formula (8); in particular

1

E(|f. — f>) = 3A% (*N(N - K)(N + K)), (12)

where A? is the variance of the quantization error.

Schmidl and Cox [6] propose using a test sequence s,
such that s, n/2 = sn. Hence, the phase of the product
anthN/g satisfies arg(ry,rnyn/2) = N7 fc+0 , where § is the
noise component. The frequency offset is then estimated in two
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steps: first, the component which corresponds the fractional
part of N f, is determined as

N/2—1

fo=(@N) " arg Z ThTneN/2

n=0

13)

then, the component which corresponds to the integral part
of N f. is determined using one additional test sequence and
calculating a few more correlations between sequences of
length N/2. The estimator by Schmidl and Cox already at
low signal-to-noise ratios approaches closely the error function
given by E(|f. — f.|?) = 6(x?snrN3)~!. The expression on
the right-hand side of this equation is equal to the Cramer-Rao
bound for frequency offset estimation using one test sequence
which consists of two identical halves. That Cramer Rao bound
can be obtained from (4) by taking K = N/2. One can observe
that the estimation accuracy can be improved by 1.25dB if
sequences composed of shorter identical segments (K small
compared to N) are used. Note, however, that Cramer-Rao
bound for frequency offset estimation using two sequences of
length N is 10.25dB below the accuracy attained by Schmidl-
Cox method, and that a fair comparison between this method
and methods which do not require two training sequences
should consider the accuracy of the latter methods attained
using training sequences of length 2/N. Our method, therefore,
has the potential for improving the accuracy over the method
by Schmidl and Cox by 10.25dB for the same amount of
training data. In the following section we report simulation
results which show a 9dB improvement. The discrepancy
between the expected and attained improvements is due to
imperfect phase unwarping which occurs in implementations
of our algorithm.

Using training sequences which consist of more than two
identical segments has been previously proposed by Morelli
and Mengali [8]. Their scheme also requires only one training
sequence and estimates frequency offset from correlations:

N-1
Z rer*(k—mK), 0<m < N/2K .
k=mK

1
Rm) = 5ok
(14)
The algorithm proposed by Morelli and Mengali is also
asymptotically efficient, i.e. its accuracy attains Cramer-Rao
bound in (4) as the signal-to-noise ratio increases. However,
their algorithm is computationally considerably more complex
than the algorithm by Schmidl and Cox or our algorithm.
In particular, the method by Morelli-Mengali requires O(N 2)
complex multiplications and additions for computing the cor-
relations in (14).

Let us now compare the three algorithms in terms of
their sensitivity to the quantization involved in evaluating the
argument of a complex number. In the case of Schmidl-Cox
estimator, it follows immediately from formula (13) that the
quantization error of variance A? induces an estimation error
the variance of which is E(|f. — fo|?) = A2(x2N2)1.
On the other hand, it can be shown that in the case of the
method proposed by Morelli and Mengali the variance of the

estimation error caused by this quantization is approximately
E(|f. — f|*) = A%(7.572N)~!. Hence, the algorithm pro-
posed in this paper reduces the error caused by the quantization
of arg(-) function by factor N/3 compared to the method by
Schmidl and Cox, and by a factor close to N2/25 compared
to the scheme proposed by Morelli and Mengali.

V. IMPLEMENTATION AND SIMULATION RESULTS

The frequency offset estimator proposed here finds the
frequency offset as the average, over i, of the slopes of the
straight lines which best approximate observed phase angle
sequences {i, Xtk ,QitoK, - -, it N—K } (See expression
(6)). In absence of any noise, these observed angles should be
Qitnk = ¢i + 27 fc(nK + i). The angles a; are determined
using arctan function, o; = arctan(Im(r;)/Re(r;), which
causes phase warping if an actual «; falls outside of the range
(—m, ). The proposed frequency offset estimator, therefore,
requires an additional phase unwarping algorithm.

The first step of the phase unwarping algorithm which
we used in the simulations reported here consists of filtering
each sequence {a;, Xy, oy QirnN—K}, ¢ = 0,1, K — 1,
using filterg ={11111 —1 —1 —1 —1 —1]. The length
of this filter is not critical. By observing relative positions and
values of maxima in the filtered sequences, we determine those
ai+nk Where phase warping occurs. In addition, based on
these maxima we can determine whether a certain a1 p,x is
the beginning of phase warping at all subsequent ;4 x, 7 >
Ny, or if 4y, K is a point of an isolated phase warping caused
by additive noise.

From unwarped phase angle sequences we find estimates

ffi, 1 =0,..., K — 1, of the frequency offset as
) N/K-1
Ad
fe=4C1 Y (=N +K +2Kn)onk i

n=0

15)

These estimates are then relabeled as fezkl, k=0,..,K -1,
in the following manner. Recall that f:k is obtained from
subsequence

1(d; 27 fe (nK 41y _
TivinK = tike](¢ kT2 fe(nK i) + Wi 4nk, n=0,1,....

We label felk so that t;, > t;; > ... > t;,.,. The magnitude
parameters t; can be also estimated by minimizing the error

. . . . ~ N/K=1
function in (5) which gives t; = (K/N)Y /07 [rnk+il-
Finally we consider the following set of estimators,

fe=mean(A°, £ MY k=0,1,. K -1,

and select for the final frequency offset estimator that f; which
minimizes the mean square error between a straight line with
the slope 2w K f;, and the corresponding sequence

mean (g4 nk , Vg +nky - Vigtnk) , B =0,.... NJK —1.

The rationale behind this final selection process is that we
believe that the phase unwarping would be most accurate for
those sequences {a;, @it K, ..., %y N— Kk } Which correspond to
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largest values of ¢;. Hence, first the estimate fo = fﬁlo is ob-
tained from {a,, @iy 4+ K5 ..., Qi+ N—k }. Then this estimate is
refined as f; = mean( sz07 feh) if the error of approximating
the sequence

Qjp + 0y Qg+ K + Q4+ K Qg+ N—K + Qi y N— K
5 , 5 s eees 5

using a straight line with slope f; is smaller than the error of
approximating {,, Qg+ K, -, Qig+N—k | Using a line with
slope fq, and so on.

Simulation results which compare our algorithm with the
algorithms proposed by Schmidl and Cox and by Morelli
and Mengali are shown in Figures 1 and 2. Simulations are
performed for N = 128-tone OFDM, assuming a three-
tap Rayleigh fading channel, five-point cyclic prefix, and
frequency offset f. = 0.001. We obtained identical results
for fo = 0.02. In all simulations parameter K was taken to
be K = 4. In Figure 1, the curve denoted by SC2 represents
the method by Schmidl and Cox that requires two training
sequences of length N. The curves labeled CT1 and CT2 on
the same figure represent results obtained using our algorithm
with one or two training sequences, respectively. The curve
obtained using the algorithm by Morelli and Mengali is not
shown in Figure 1; it is almost indistinguishable from the
Cramer-Rao bound which corresponds to the two-training-
sequence case, plotted by the dash-dot line. The curve labeled
CT2/2 represents the results obtained by our algorithm with a
particularly simple selection method f, = ( £+ feh)/ 2. We
can observe from Figure 1 that our algorithm, while having
similar complexity, improves the accuracy compared to the
Schmidl-Cox algorithm by 7dB at 0dB SNR, and then by 9dB
from 3dB SNR on. We can also observe that our algorithm
is around 4.5dB inferior to the algorithm by Morelli and
Mengali at 0dB SNR, and around 1dB inferior at high signal-
to-noise ratios. In Figure 2, we compare our algorithm with
the algorithm by Morelli and Mengali taking into account
quantization of arg (the argument of a complex number)
function that takes place in all three algorithms studied in
this paper. We can observe that under quantization, which is
inevitable in practice, our algorithm performs much better than
the algorithm by Morelli and Mengali.
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