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ABSTRACT
In this paper we address the problem of blind carrier frequency off-
set (CFO) estimation in OFDM systems in the case of frequency
selective channels. By assuming real constellations, the proposed
blind method enforces a diagonal structure for signal pseudo co-
variance matrices in frequency domain. Power of non-diagonal ele-
ments is minimized. A closed-form solution is derived which leads
to accurate and computationally efficient CFO estimation in mul-
tipath fading channels. Moreover, in case of complex circularly
symmetric noise, the theoretical performance does not depend on
the SNR. Simulation results are presented using realistic channel
model in typical urban scenarios.

1. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) modulation
has already proven successful for both wireless (e.g. DVB-T and
WLAN) and wireline applications (e.g. ADSL). Multicarrier mod-
ulations are a powerful technique to handle impairments of wireless
communication media such as multipath propagation, due to their
ability to turn frequency selective channels into a set of narrow-
band frequency flat channels. Hence, OFDM is a viable candidate
for future beyond 3G wireless communications standards.

One of the main drawbacks of OFDM is its high sensitivity
to frequency offsets caused by the oscillator inaccuracies and the
Doppler shift due to mobility, giving rise to inter-carrier interfer-
ence (ICI). This issue is critical when higher data rates are required,
and relatively large number of subcarriers and very narrow guard
bands are used. Consequently, frequency offset estimation must be
accomplished with high fidelity.

The ICI resulting from carrier offset can be compensated in
several ways. One may perform frequency offset estimation and
then offset compensation [1, 4, 7] or can compensate directly for
the offset [3]. Both approaches can be applied in a blind manner
[3, 7] or by using training symbols [1]. Several blind methods rely
on examining the correlation of the received signal [2, 5, 7]. The
method in [2] investigates the diagonal elements of the correlation
matrix of the received signal. Methods proposed in [5, 7] use cross-
correlations between successive received blocks and require a spe-
cific preprocessing stage, assuming redundancies in the transmitted
symbols or blocks. Unfortunately, they lead up to 50% decrease
of the effective data rate. Blind frequency offset compensation has
been also addressed in [4] based on the diagonal elements of signal
pseudo-covariance matrix assuming AWGN channel.
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In this paper, a method for CFO estimation and compensa-
tion in frequency selective channels is introduced. The method is
blind since it does not require a priori knowledge of the transmit-
ted data or the multipath channel. A cost function minimizing the
total off-diagonal power induced by ICI in received signal pseudo-
covariance matrix is derived. Enforcing a diagonal structure leads
to perfectly frequency synchronized OFDM transmission. The pro-
posed method assumes that real constellations are used. This allows
embedding the frequency offset in the cost function. In addition,
the theoretical performance of the estimator becomes independent
of the signal-to-noise ratio (SNR) in the face of complex circularly
symmetric noise. Hence it enables accurate CFO estimation at low
SNR regime, where decision-directed methods are most likely to
fail. A closed-form expression is found for the cost function which
leads to low complexity and accurate computational solution.

The rest of the paper is organized as follows. The system model
is briefly described next. In Section 3, we define the cost function
and derive a new blind frequency offset estimation algorithm. In
Section 4, we demonstrate the reliable performance of the proposed
method in simulations using realistic channel model and different
noise levels. Finally, Section 5 concludes the paper.

2. SYSTEM MODEL

2.1. Input-output relationships

The OFDM transmission model used in this paper is presented in
Figure 1. As the cyclic prefix provides us with inter-block inter-

freq.
offset

offset
comp.

CPDFT

H

IDFT
x~

εr
r̂

P/S

S/P

CP

noise

Channela
S/P

r

w

Fig. 1. OFDM transmission chain.

ference free transmission, we can process each OFDM block inde-
pendently. The kth modulated OFDM block is written as x̃(k) =
FNa(k), where FN is the N × N inverse discrete Fourier trans-
form (IDFT) matrix, N being the total number of subcarriers and
a(k) is the N × 1 complex symbol vector.

The P × 1 signal block after cyclic prefix insertion, followed
by transmission on the wireless channel (Figure 1) is expressed as:

r(k) = HTCP x̃(k), (1)
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where H is the Toeplitz channel convolution matrix of size P ×
P and the P × N matrix TCP adds a cyclic prefix of length L.
Consequently P = N + L is the total OFDM block size. The
channel taps {hl}l=0,...,Lh−1 contained in H are assumed to be
time-invariant. The channel is considered to have a maximum of
Lh taps, hence it is frequency selective. The length of the cyclic
prefix is L ≥ Lh in order to avoid inter-block interference.

Let us now assume the received signal is subject to a frequency
deviation ε, a single parameter to be estimated. The quantity ε cho-
sen as 0 ≤ ε < 1, is referred to as normalized frequency off-
set. Thus, effective frequency deviation lies within the interval
[0, B/N [, where B is the total bandwidth allocated to the system.
Hence, the received P × 1 block with frequency offset is:

rε(k) = Cε r(k) + w(k), (2)

where Cε is the P ×P frequency offset diagonal matrix having the
form:

Cε = diag {cε} , (3)

with cε = [1, exp (j2πε/N), . . . , exp (j2π(P − 1)ε/N)]T . The
complex noise term w in (2) is assumed to be proper complex Gaus-
sian [6].

2.2. Frequency offset compensation

Given an estimate ε̂ of the true value ε, frequency offset can be
compensated for at the receiver in the following way:

rε̂ε(k) = C∗
ε̂rε(k) (4)

= C∗
ε̂Cεr(k) + C∗

ε̂w(k), (5)

where (5) follows from (2), Cε̂ has the structure defined in (3), and
∗ denotes the complex conjugation operation.

After cyclic prefix removal followed by DFT on (4), we obtain
the vector:

r̃ε̂ε(k) = FH
NRCP rε̂ε(k) = FH

NRCP C∗
ε̂rε(k), (6)

where the matrix RCP =
ˆ
0N×L IN

˜
is used to remove the

cyclic prefix.

3. BLIND FREQUENCY OFFSET ESTIMATION

3.1. Signal pseudo-covariance matrix structure

Let us first define the pseudo-covariance matrix of the signal in
time-domain as follows:

Rε � E
h
rε(k)rT

ε (k)
i
, (7)

where E [·] is the expectation operator. The justification to employ
pseudo-covariance instead of the commonly used covariance is that
it vanishes for proper complex random variables such as the noise
term w, but the information on the frequency offset ε is retained.
Consequently, the proposed method applies to real constellations.

Starting from equations (1) and (2), we express (7) as:

Rε = CεHTCP FNE
ˆ
a(k)aT (k)

˜
FT

NTT
CP HT CT

ε +

E
h
w(k)wT (k)

i
. (8)

In the following, we assume unit power independent BPSK sym-
bols, leading to E

ˆ
a(k)aT (k)

˜
= I and circular white Gaussian

noise with variance σ2, which implies E
ˆ
w(k)wH(k)

˜
= σ2I,

and E
ˆ
w(k)wT (k)

˜
= 0. In theory, the pseudo-covariance of

the noise vanishes on average. Hence the performance of the al-
gorithm should not depend on the SNR if noise is circularly sym-
metric. However in practice, the sample estimates of the pseudo
covariance matrix experience perturbations because of noise.

Let us consider compensation for the carrier offset as defined in
(4). It is followed by cyclic prefix removal and DFT. Consequently,
the pseudo-covariance matrix eRε̂ε = E[r̃ε̂ε(k)r̃T

ε̂ε(k)] of the signal
r̃ε̂ε(k) in (6) may be expressed as:

eRε̂ε = FH
NRCP C∗

ε̂ E
h
rε(k)rT

ε (k)
i
C∗

ε̂R
T
CP FH

N , (9)

where due to symmetry properties, C∗
ε̂

T = CH
ε̂ = C∗

ε̂ and FH
N

T
=

FH
N . Using (7), eRε̂ε can also be expressed in terms of Rε as:eRε̂ε = FH

NRCP C∗
ε̂ Rε C∗

ε̂R
T
CP FH

N . (10)

Null or perfectly compensated frequency offset leads to a per-
fectly orthogonal transmission, and hence to diagonal auto covari-
ance matrices in the frequency domain. Off-diagonal elements ineRε̂ε are induced by inter-carrier interference and should be mini-
mized.

3.2. Cost function minimizing total off-diagonal power

The goal here is to construct a cost function which penalizes the
off-diagonal power of eRε̂ε, for a given offset compensation value
ε̂. Based on the matrix structure in (10), let us define the matrix
function M of the real scalar µ as:

M (µ) � eRε̂ε

˛̨
ε̂=µ

= FH
NRCP C∗

µ Rε C∗
µRT

CP FH
N , (11)

where µ is the offset compensation factor, 0 ≤ µ < 1. The total
off-diagonal power J (µ) of M (µ) may be written as:

J (µ) = ‖M (µ) � (�N − IN )‖2
F , (12)

where ‖ · ‖F denotes the Frobenius norm, � is the Hadamard prod-
uct, �N is the N ×N matrix filled with ones and IN is the N ×N
identity matrix. Finally, the carrier offset estimation problem boils
down to finding ε̂ such that:

ε̂ = arg min
µ

J (µ) . (13)

In the following, J will act as a cost function, penalizing the off-
diagonal energy of M. Even though the channel matrix H is un-
known to the receiver, the minimization of J is possible. The right
offset compensation value ε̂ will force the non-diagonal terms (ICI)
of M to vanish, regardless of the underlying wireless channel.

3.3. Closed-form representation of the cost function

To begin with, let us state the following useful lemma:

Lemma 1. Given any non-zero pseudo-covariance matrix R of size
P × P , and matrices FN , RCP and Cµ as defined previously in
this paper, the function KR of the real parameter µ given by

KR (µ) =
‚‚‚“

FH
NRCP C∗

µRC∗
µRT

CP FH
N

”
� (�N − IN )

‚‚‚2

F
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can be written asKR (µ) = A+B cos (2πµ)+C sin (2πµ), where
A, B, C ∈ R are specific to the matrix R.

Proof of Lemma 1 is given in Appendix, as well as the expres-
sions for A, B and C. Choosing R = Rε as defined in (7) we
have:

J (µ) ≡ KR (µ)
˛̨
R=Rε

= Aε + Bε cos (2πµ) + Cε sin (2πµ) ,

(14)
where Aε, Bε, Cε ∈ R. From (14) we conclude that J is periodic
with period 1 and we can further restrain our analysis to the interval
[0, 1[. An example of the cost function is depicted in Figure 2. The
minimum is reached at the true offset value µ ≡ ε = 0.43. The
sinusoidal form may be clearly observed which is in par with the
theory.
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Fig. 2. Cost function J (µ), ε = 0.43 and SNR=15 dB.

3.4. Algorithm

First, the algorithm computes a sample pseudo-covariance matrix at
each time instance k, i.e. bRε(k) = 1

k

Pk
n=1 rε(n)rT

ε (n). Second,
a closed-form minimization of J (µ) based on (14) is performed.
Evaluating J at three points within the interval [0, 1[ is sufficient
to perform the minimization analytically. The extremum points are
found to be:

µk =
1

2π
arctan

( √
3

`J `
1
3

´ −J `
2
3

´´
2J (0) − J `

1
3

´ −J `
2
3

´ )
+

k

2
, k = 0, 1.

(15)
Finally the frequency offset estimate yields:

ε̂ = arg min
k=0,1

J (µk) . (16)

4. SIMULATIONS

This section presents the simulation results, using the proposed
blind carrier offset estimation algorithm. The OFDM system pa-
rameters are chosen as follows: the carrier frequency is f0 = 2.4
GHz, the number of subcarriers is set to N = 64 and the available
bandwidth is taken equal to B = 0.5 MHz. The length L of the
cyclic prefix is 4. The subcarrier symbol rate is of 7.8 KHz. The
employed symbol modulation is BPSK and the SNR, if not stated
otherwise, is equal to 15 dB.

The wireless channel is assumed to experience multipath Ray-
leigh fading with independent propagation paths. At the begin-
ning of each simulation, a channel impulse response is randomly
generated with power loss [0,−1,−3,−9] [dB] and delay profile
[0, 1, 2, 3] [µs], which corresponds to a Typical Urban type of sce-
nario. The channel is then considered to remain constant during
one realization of the simulation.

In most of the simulations, independent runs of the algorithm
over 200 OFDM blocks are used. This is referred to as a realization.
Ensemble averages of the quantities of interest are computed over
100 realizations.

Blind frequency offset estimation over one realization and the
associated value of the cost function over time are shown in Figure
3. In this case, the true offset ε = 0.43 is found after less than 20
received OFDM blocks. The convergence is rapid even though no
virtual subcarriers or pilots are employed in the estimation process.
The initial off-diagonal power gets reduced by more than 14 dB.
The reduction of the level of inter-carrier interference is depicted
in Figure 4 where the pseudo-covariance matrix of the signal in
frequency domain is plot before and after compensation for the fre-
quency offset. As shown by Figure 4, accurate offset compensation
efficiently removes off-diagonal ICI terms and restores the initial
orthogonality of the OFDM transmission.
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Fig. 3. Estimated frequency offset and cost function over time (1
realization), ε = 0.43 and SNR=15 dB.
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Fig. 5. On the left: MSE vs. number of observed blocks,
SNR=5dB. On the right: MSE after convergence vs. SNR. (En-
semble average over 100 realizations, ε = 0.43). The performance
is almost constant regardless of the SNR.

The Mean Square Error (MSE) is chosen as an error criterion
for offset estimation:

MSE = E |ε̂ − ε|2. (17)

Plots of the MSE versus number of observed blocks and SNR are
depicted in Figure 5. Convergence is obtained on average after 30
blocks and the MSE reaches 2.10−5 at 5 dB SNR after 200 blocks,
leaving a residual error less than 1%. The graph of MSE after con-
vergence (200 blocks) as a function of the SNR does not show any
significant dependence of the performance on the noise level, as
expected, and the MSE remains around 10−5. Note that no vir-
tual subcarriers are exploited here. Hence, the proposed method
estimates the offset with high fidelity and the performance remains
almost constant regardless of the SNR.

5. CONCLUSIONS

In this paper, a blind frequency offset estimator for OFDM systems
was introduced. Since perfect carrier frequency synchronization
implies diagonal pseudo-covariance matrix for the received signal,
a cost function was designed to enforce such a diagonal structure
and thereby estimate the frequency offset. Cost function minimiza-
tion is accomplished entirely in closed-form. No knowledge of the
underlying multipath wireless channel is required. Channel estima-
tion can then be performed as a subsequent step, after frequency
synchronization is acquired. The CFO is estimated accurately and
the performance remains almost constant regardless of the SNR.

6. APPENDIX

Proof of Lemma 1: First, let us define the matrix M (µ) of size
N × N as M (µ) = FH

NRCP C∗
µRC∗

µRT
CP FH

N , with its general
term given by:

mrs =
1

N
e

4πjLµ
N

N−1X
k=0

N−1X
l=0

e−
2πj(kr+ls−(k+l)µ)

N rkl, (18)

with r, s = 0, . . . , N − 1 and where rkl is the (k, l)-th element of
the matrix R of size P × P . Then, KR is expressed as:

KR (µ) ≡ ‖M (µ) � (�N − IN )‖2
F =

N−1X
r=0

N−1X
s=0
s �=r

|mrs|2. (19)

Inserting |mrs|2 = mrsm
∗
rs from (18) into (19) and re-arranging

terms leads to:

KR (µ) =
1

N2

N−1X
k=0

N−1X
k′=0

N−1X
l=0

N−1X
l′=0

e
2πj(k−k′+l−l′)µ

N rklr
∗
k′l′ · . . .

. . . ·
N−1X
r=0

e−
2πj(k−k′)r

N

N−1X
s=0
s �=r

e−
2πj(l−l′)s

N . (20)

First, we notice that:

N−1X
s=0
s �=r

e−
2πj(l−l′)s

N =

N−1X
s=0

e−
2πj(l−l′)s

N − e−
2πj(l−l′)r

N . (21)

Second, we recall the following well known result:

∀ v ∈ Z,

N−1X
u=0

ej 2πuv
N =

j
N, if v = kN, k ∈ Z.
0, otherwise.

. (22)

Finally, applying (21) and (22) onto (20) provides us with the fol-
lowing closed-form expression for KR (µ):

KR (µ) =
N−1X
k=0

N−1X
l=0

|rkl|2 − 1

N

N−1X
k=0

N−1X
k=0

k−k′+l−l′=0

N−1X
l=0

N−1X
l′=0

rklr
∗
k′l′ +

− 2

N2
Re

8><>:
N−1X
k=0

N−1X
k=0

k−k′+l−l′=N

N−1X
l=0

N−1X
l′=0

rklr
∗
k′l′

9>=>; cos (2πµ) + . . .

− 2

N2
Im

8><>:
N−1X
k=0

N−1X
k=0

k−k′+l−l′=N

N−1X
l=0

N−1X
l′=0

rklr
∗
k′l′

9>=>; sin (2πµ) .
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