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ABSTRACT

Due to the high sensitivity of OFDM to carrier fre-
quency-offset, accurate estimation algorithms are re-
quired in order to achieve high performance. We
show that many of the existing methods share the
same underlying approach, which is the exploitation
of null subcarriers. Based on this, a novel compu-
tationally simple estimator, named the approximate
non linear squares estimator (ANLS), is developed.
We show that the performance of the ANLS estima-
tor is very close to that of the computationally more
demanding NLS estimator, and superior to existing
low-complexity estimators.

1. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM)
has become the standard choice for many wireless
communications systems. The popularity of OFDM
stems from its ability to transform a wideband fre-
quency selective channel to a set of parallel flat-fading
narrowband channels, which substantially simplifies
the channel equalization problem. However, carrier
synchronization turns out to be a critical issue for
OFDM systems: CFO destroys the orthogonality of
the sub-carriers leading to degraded SNR and BER.
Here, we address the frequency synchronization prob-
lem. Clearly, issues such as timing recovery and chan-
nel estimation are important, but will not be treated
in this paper. Here, we assume perfect frame and time
synchronization and focus on carrier frequency offset
(CFO) estimation.

CFO estimation techniques may be classified as
time-domain (pre-FFT) or frequency-domain (post-
FFT) techniques. The latter are usually used to esti-
mate the integer part of the CFO (normalized by the
subcarrier spacing) after the fractional part has been
identified and corrected. Time-domain methods are
used to estimate the fractional part of the CFO, al-
though some of these techniques can also estimate the
integer part. Here, we focus on time-domain methods.

Time-domain methods can be classified into those
that exploit the time-diversity provided by the cyclic
prefix (CP) and/or oversampling, those that ignore
the CP and rely on pilots or null subcarriers (NSC),
and those based on joint channel and CFO estimation.

Some CFO estimation methods are classified as be-
ing data-aided although they do not use the known
pilot block. This is the case for methods based on
structuring the OFDM symbol as a repetition of J ≥ 2
identical slots, [1, 3]. These methods are, in fact, NSC-
based techniques, since a repetition of J ≥ 2 identical
slots can be generated by zeroing all subcarriers whose
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frequencies are not multiple of J∆f . In [2], two iden-
tical OFDM symbols were used to estimate the CFO.
Even though this method is not NSC-based, it can be
mathematically described as one by considering the
two symbols as a double-sized OFDM symbol (i.e.,
2M subcarriers) generated by setting the subcarriers
with odd frequencies to zero. These repetitive slot-
based techniques require the number of NSC to be
larger or equal to half the total number of subcarriers.
Since the number of training zeros is large, it is appro-
priate to call them data-aided. When the only NSCs
are those imposed by system design requirements, i.e.
the virtual subcarriers, the method is referred to as
blind [4]. If in addition to these NSC, extra NSC are
inserted, the technique is classified as semi-blind since
the receiver knows the locations of the NSC. Here, we
avoid this confusion and refer to the approach simply
as the NSC-based approach. A nice property of the
NSC-based methods is that CFO and channel estima-
tions are decoupled, which implies that no model is re-
quired for the channel during CFO estimation. In [6],
we presented a general framework for this approach
and derived the best placement of NSC in terms of
CFO estimation accuracy. Here, we show that ex-
ploiting the repetitive structure of the preamble is a
simplified version of the NSC-based method. We also
present a novel low-complexity CFO estimator.

2. SIGNAL MODEL

We consider a standard OFDM system with M sub-
carriers spaced at ∆f . Subcarriers at the band-edges
are usually unmodulated in order to prevent interfer-
ence with adjacent OFDM channels; such subcarriers
are often called virtual subcarriers (VSC). In addi-
tion to the VSC, other subcarriers may be switched
off; e.g., if the transmitter has CSI information, sub-
carriers subject to deep fades or NBI may be left in-
active. Further, synchronization preambles are often
made by zeroing a large number of subcarriers. In-
deed, a preamble consisting of a repetition of two iden-
tical slots is obtained by zeroing all the odd subcarriers
[1]. The set of NSC includes the VSC, whose place-
ment and number are imposed by system design; the
number and placement of the remaining NSC are con-
trolled by the system user, and could vary across the
OFDM symbols. Let M = {0, ..., M − 1} denote the
entire set of subcarriers, and let Ki (resp. Zi) denote
the subsets of M that contain the Ki (resp. Zi) mod-
ulated (resp. null) subcarriers during the ith OFDM
block.

The vector modulating the entire set of subcarri-
ers during the ith block can then be expressed as
s(i) := VisK(i), where sK(i) is the Ki-element vec-
tor of symbols transmitted on the activated subcarri-
ers, and Vi is the M × Ki matrix whose (m, n) en-
try is one if the nth symbol is transmitted on the
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m-th subcarrier during the ith OFDM block, and is
zero otherwise. We assume without loss of generality
that the symbols are zero mean and have unit vari-
ance, i.e., E|s(i, m)|2 = 1 for m ∈ Ki.

1 The (M × 1)
data block s(i) is first precoded by the IFFT matrix
FH with (k, m)th entry 1√

M
exp(j2πkm/M). The re-

sulting (M × 1) vector u(i) = βiF
Hs(i) is called the

time-domain block vector, or the time domain OFDM
symbol. We have also introduced a normalization pa-
rameter βi :=

√
M/Ki to ensure that the transmitted

power is kept constant regardless of Ki, the number
of active subcarriers. Next, a CP of length Lcp is
inserted by replicating the last Lcp elements of each
block in the front. The P (= M +Lcp) samples of each
block are then pulse shaped, upconverted to the car-
rier frequency, and transmitted sequentially through
the channel.

We model the frequency-selective channel as a
FIR filter with channel impulse response (CIR) h =
[h0, ..., hL]T where L is the channel order, with L ≤
Lcp ≤ M . We assume that the CIR is time-invariant
over N ≥ 1 consecutive symbol blocks, but could vary
from one set of N blocks to the next.

The received signal is downconverted to baseband
and sampled at the rate of P samples per extended
OFDM symbol. We will assume that time synchro-
nization has been achieved. Let ν (a real number)
denote the CFO normalized by ∆f = 1/T , where T
is the duration of the useful OFDM symbol. In the
presence of CFO, the m-th sample of the i-th received
OFDM symbol will experience a phase shift equal to
2πν(iP + m)/M . After discarding the CP, the m-th
sample will have phase shift 2πν(iP + Lcp + m)/M ,
m = 0, ..., M − 1. The noise and CFO corrupted sym-
bol blocks are obtained as

x(i) = βie
j2πν(iP+Lcp)/MD(ν)HcF

Hs(i) + n(i) (1)

where D(ν) = diag (1, ..., exp(j2πν(M − 1)/M)), Hc

is the (M × M) circulant matrix with first row
[h0, 0, ..., 0, hL, ..., h1] and n(i) is the M × 1 noise vec-
tor, which is assumed to be zero mean complex Gaus-
sian with covariance matrix σ2I. The circulant matrix
Hc is diagonalized by the FFT matrix, so that x(i) can
also be expressed as

x(i) = βie
j2πν(iP+Lcp)D(ν)FHD(H)s(i) + n(i) (2)

where Hk :=
∑L

l=0 hle
−j2πkl/M and D(H) =

diag (H0, ..., HM−1).

3. REPETITIVE SLOTS-BASED CFO
ESTIMATION

In OFDM systems, pilot symbols are usually trans-
mitted prior to the information frame. For example
in IEEE802.11a, the preamble is a series of identi-
cal slots. Using this preamble structure, a nonlin-
ear least square (NLS) CFO estimator is proposed in
[5]. Correlation-based estimation methods were also
proposed in [2] and [3]. In this section, we show the
links between the NLS and the correlation-based tech-
niques.

1Notation: We use the Matlab notation A(1 : R, 1 :
S) to denote the submatrix formed by the first R rows
and first S columns of the matrix A; when all columns are
included ‘1 : S’ is replaced simply by‘:’. s(i, m) denotes
the mth element of s(i). Superscripts T and H will
denote transpose and conjugate transpose. R [·] denotes
the real part operator; arg{·} the argument operator, and
[x]2π modulo-2π operation.

In order to compare the repetitive slots-based ap-
proach with the null-subacarrier-based approach, we
assume that the preamble is a single OFDM block
made of J identical sub-blocks of length Q = M/J
each; we assume that Q is an integer. A CP is also
used with this preamble. The case where the pream-
ble is made up of a sequence of identical OFDM blocks
can be treated similarly. For example, two identical
OFDM symbols can be thought of as two half symbols
of a 2M -point OFDM block. In this case, a guard in-
terval is not needed between the identical blocks.

In this section, we use a single OFDM symbol; hence
we may set i = 0. Using eq. (1), the received samples
can be expressed as

x(k + �Q) = z(k) ej2πν�/J + n(k + �Q)

k = 0, ..., Q − 1; � = 0, ..., J − 1

where z(k) = ej2πν(Lcp+k)/MHc(k, :)u; the last equal-
ity follows from the slot structure u(k + �Q) = u(k),
k = 0, ..., Q − 1, � = 0, ..., J − 1. Although z(k)
depends upon ν, the ν dependent factor can be ab-
sorbed into u, and hence ignored. The vector z =
[z(0), ..., z(Q − 1)]T may be modelled as an unknown
non-random vector. Note that the acquisition range
increases with J and is given by [−J/2, J/2).

3.1. Nonlinear Least Squares Method
The NLS estimators of z and ν are obtained by mini-
mizing [5]

J−1∑
i=0

Q−1∑
k=0

∣∣∣x(k + �Q) − z(k)ej2πν�/J
∣∣∣2

Since this criterion is quadratic in the z(k)’s, the NLS
of ν is found to be

ν̂REP = arg max
ν

Q−1∑
k=0

1

J

∣∣∣∣∣
J−1∑
�=1

e−j2π�ν/Jx(k + �Q)

∣∣∣∣∣
2

.

This estimator can also be expressed as

ν̂REP = arg max
ν

J−1∑
m=1

R
[
r(mQ)e−j2πmν/J

]
(4)

where r(τ) is the sample correlation

r(τ) =

M−τ−1∑
k=0

x∗(k)x(k + τ) .

When J = 2, the estimator is given in closed-form as

ν̂REP =
1

π
arg{r(M/2)} . (5)

The estimator in eq. (5) was proposed in [2] and [1].
If J > 2, no closed-form solution is available for the
optimization problem in eq. (4). The estimator can
be initialized or even replaced by the following simpler
estimators.

3.2. Computationally simpler estimators
The expected value of r(mQ) is given by

E {r(mQ)} = (J −m)‖z‖2ej2πmν/J , m = 1, ..., J −1,

where ‖z‖ is the L2-norm of z. Therefore, the phase
of any correlation coefficient r(mQ) can be used to
estimate ν. This implies that the estimator in eq.
(5) is valid even when J > 2. In order to improve
accuracy, the phases of the r(mQ)’s, m = 0, ..., J − 1,
can be judiciously combined. Next, we present two
ways of combining these phases.
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3.2.1. Approximate NLS estimator
Let φm denote the unwrapped phase of r(mQ) for

m = 1...J − 1. The NLS criterion can be rewritten as

J−1∑
m=1

|r(mQ)| cos(φm − 2πmν/J) .

Setting the derivative of this criterion with respect to
ν to zero, we obtain

J−1∑
m=1

m|r(mQ)| sin(φm − 2πmν/J) = 0 .

Under the small error approximation, i.e., sin(φm −
j2πmν/J) ≈ (φm − j2πmν/J), the approximate NLS
estimator is obtained as

ν̃ANLS =
J

2π

∑J−1
m=1 m|r(mQ)|φm∑J−1

m=1 m2|r(mQ)| . (6)

This technique requires phase unwrapping. This task
is not too demanding given the fact that the lags of the
few correlations to be computed are quite apart from
each other. In our simulations, this phase unwrapping
has always been carried out successfully.

3.2.2. BLUE estimator [3]
A technique of combining the individual phases

without phase unwrapping was developed in [3]. It is
based on the best linear unbiased estimator (BLUE)
concept. Let ϕ(m) = [arg{r(mQ)} − arg{r((m −
1)Q)}]2π. The BLUE estimator of ν was then ex-
pressed as

ν̌REP =
J

2π

p∑
m=1

w(m)ϕ(m) (7)

where p is a design parameter and the weighting coef-
ficients are given by [3]

w(m) = 3
(J − m)(J − m + 1) − p(J − p)

p(4p2 − 6pJ + 3J2 − 1)
.

It was stated in [3] that the variance of the above
estimator is minimum when p = J/2.

4. NSC-BASED CFO ESTIMATION

Here, we first review the general framework for the
NSC-based approach that we developed in [6]. Then,
we establish the link between the NLS and NSC-based
estimators. Let D(HKi) = diag (Hn, n ∈ Ki), and de-
note the ith block of CFO-rotated and faded symbols
by

α(i) = ej2πν(iP+Lcp)/MD(HKi)sK(i) .

Then, the signal model in (2) can be rewritten as

x(i) = βiD(ν)FHViα(i) + n(i) . (8)

Frequency synchronization is often required prior to
channel estimation. Thus, at this stage, the channel
coefficients, the Hk’s, may be regarded as unknown
non-random parameters. Therefore, the α(i)’s will be
modelled as unknown non-random vectors. We adopt
a deterministic maximum likelihood (ML) approach.

Our objective is to estimate the CFO using N sym-
bols, x(i), i = 1, ..., N . If a reference symbol is used for
frequency synchronization, N = 1 and a large number
of NSC is usually deployed. For blind and semi-blind

method, N is usually relatively larger and the num-
ber of NSC is significantly lower. For example, in the
blind CFO estimation proposed in [4], the only NSC
are the VSC, which are imposed by system design.

The ML estimator was shown to be [6]

ν̂NSC = arg min
ν

N∑
i=1

∑
k∈Zi

|X(i, ν + k)|2 (9)

where X(i, f) =
∑M−1

�=0 x(i, �) exp(−j2πf�/M). We
can therefore interpret the estimator as follows: in the
absence of CFO, the subcarriers are orthogonal, and
the energy of the received signal at the NSC should
be zero. We estimate the CFO as the frequency shift
that minimizes the energy at the NSC or maximizes
the energy at the active carriers ([4, 6]).

The estimator can also be written in terms of the
time-domain correlation function as in [6]:

ν̂NSC = arg max
ν

M−1∑
τ=1

R
[

N∑
i=1

[ri(τ)ψ∗
Ki

(τ)]e−j2πτν/M

]

(10)
where

ψKi(τ) =
1

M

∑
k∈Ki

ej2πkτ/M ,

and

ri(τ) =

M−1−τ∑
�=0

x∗(i, �)x(i, � + τ) ,

and x(i, �) was defined earlier as the �th entry of x(i).

4.1. Special case: repetition of slots
Here, we assume N = 1 and we drop the time in-
dex i from all vectors and matrices defined above. As
mentioned previously, an OFDM symbol structured as
a repetition of J identical slots can be generated by
nulling the subcarriers whose normalized frequencies
are not multiples of J . Some of the remaining subcar-
riers could also be nulled depending on whether VSC
are present or not. Next, we consider how the presence
of VSC impacts the estimator.

4.1.1. Virtual subcarriers absent
The elements of K are now nm = mJ , m = 0, ..., Q−

1, where Q = M/J is assumed an integer, and J ≥ 2.
Now ψK(τ) is nonzero only if τ is a multiple of Q, i.e.,

ψK(τ) =
K

M
δ(τ − mQ) m = 0,±1,±2, ... . (11)

The estimator in eq. (10) thus reduces to the repeti-
tion slot-based NLS estimator in eq. (4). Therefore,
we have shown that the latter estimator is also the
NSC-based ML estimator when the odd subcarriers
are switched off and no virtual subcarriers are present.

4.1.2. Virtual subcarriers present
In the more realistic case where some of the sub-

carriers at the edge of the spectrum are nulled to
avoid interference between adjacent OFDM systems,
the ML estimator is different from that in eq. (4). Let
K = (2I + 1), the number of active subcarriers. The
useful subcarriers are then {0, ..., I, M − I, ..., M − 1}
with I < M/2. The subcarriers of this set whose fre-
quencies are not multiple of J are also nulled in order
for the OFDM symbol to have a repetitive structure.
The function ψK(τ) is still real-valued but different
from that in eq. (11). An example of this function is
displayed in Figure 1. Here, most of the correlation
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Figure 1. ψK(τ) when M = 64, J = 4 and I = 24.

coefficients contribute to the ML estimator. The esti-
mator in (4) is still consistent but is no longer ML. The
estimator in (4) now consists of using only the (J − 1)
highest correlation coefficients, and could therefore be
seen as an approximate ML estimator. In the simu-
lation section, we investigate the difference in perfor-
mance of the two estimators. We will see that the
performances are very similar for practical values of J
and/or for moderate-to-high SNR.

5. SIMULATION RESULTS

We compare the performance of the various techniques
developed in this paper. We assume a preamble is
available for CFO estimation. This preamble consists
of one OFDM symbol structured as a repetition of
J ≥ 2 identical slots. We consider an OFDM system
with a total of 64 subcarriers. There are 11 virtual
subcarriers at the edges of the spectrum. The useful
part of an OFDM symbol, which contains 64 samples,
is preceded by a cyclic prefix of length 16. QPSK mod-
ulation is used. The channel has 15 paths, with path
delays 0, 1, 2, ..., 14 samples. The magnitudes of the
channel coefficients, the hi’s, are Rayleigh distributed
with exponential power delay profile (the decay factor
of the exponential is taken to be 1/5) , while their
phases are uniformly distributed over [−π, π). Fur-
ther, the channel coefficients are independent of each
other. We consider the scenario where the channel
is static over an OFDM symbol. The comparison is
based on the mean square error (MSE) in CFO esti-
mation which is calculated using 2000 runs.

Figures 2-3 display the MSEs vs. SNR for different
values of J . It is seen that the proposed approximate
NLS (ANLS) estimator has approximately the same
accuracy as the NLS and the ML estimators. This
accuracy is close to the CRB (derived in [6]). This
suggests that ANLS should be preferred to the other
estimators as it is computationally simpler. Indeed,
no numerical optimization is required for the ANLS
method. Furthermore, the ANLS estimator performs
better than the BLUE estimator in eq. (7) where
p = J/2 [3]. For high SNR, all the techniques have
identical accuracy.
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Figure 2. MSE of CFO estimates; J = 4; M =
64; L = 15.
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Figure 3. MSE of CFO estimates; J = 8; M =
64; L = 15.
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