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ABSTRACT

Although statistical characteristics of audio features are widely
used for audio representation in most of current audio analysis
systems and have been proved to be effective, they only utilized
the average feature variations over time, and thus lead to
ambiguities in some cases. Structure patterns, which describe
the representative structure characteristics of both temporal and
spectral features, are proposed to improve audio representation.
In this paper, three kind structure patterns, including energy
envelope pattern, sub-band spectral shape pattern and
harmonicity prominence pattern, are proposed or refined, as
successive development of our previous work [1]. Evaluations
on a content-based audio retrieval system with more than 1500
clips showed very encouraging results.

1. INTRODUCTION

Precise and effective representation of sound object is the
essential basis for content-based audio analysis, such as audio
classification [2], audio retrieval [3] and audio scene analysis
[4]. In most of current audio analysis systems, audio
representation is mainly based on statistical characteristics of the
temporal and spectral features of each frame; and the statistics,
including mean, standard deviation or covariance, are used to
describe the properties of an audio clip. Although statistical
features have proved their effectivity in many previous works,
they only utilized the averaged feature variations over time, but
ignored the detail status in each time slot or frequency band and
the variation pattern of each feature, and thus lead to ambiguities
in some cases.

For instance, Fig. 1 (a) illustrates two different sounds
which have a similar representation based on their statistical
characteristics only. The left part is spectrogram and energy
envelope of a sound of “car crash”, it is a sudden bang followed
by a series of decrescendo effects of things broken. The right
part is a sound of “surf”, describes a gradually approaching
ocean wave which finally impacts the coast. Although these two
sounds are absolutely different from human perception, they
have very similar statistical characteristics of both temporal and
spectral features, such as short time energy, zero crossing rate,
and spectral centroid. On the other side, only using statistical
features in audio representation may also make two audio clips
of the same sound different. Fig. 1(b) shows such an example,
where both the left and right are sounds of “motor engine”,
which describe the engine ignition process of motorcars. The

statistical features of them are not as similar as expected. For
example, the right one has higher spectrum energy, especially in
high-frequency band; and its energy is uniformed distributed in
temporal domain, which makes the derivative much smaller. It
results in evident difference of them under current audio
representation system.
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(a) car crash (left) and surf (right)
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(b) two samples of sound “motor engine”

Fig. 1. Illustration of some sound effects (a) different sounds
with similar statistical features; (b) similar sounds with different
statistical features

To complement the disadvantages that statistical-based
representation only describes the average information, feature
structure patterns are proposed to improve audio representation.
Feature structure pattern means the representative pattern which
describes structure characteristics of both temporal and spectral
features, such as the energy envelope and harmonicity pattern.
Psychophysical researches [5] have indicated that these patterns
act an important role in human perception of sound objects. For
instance, the pattern of energy envelope can help to distinguish
sounds illustrated in Fig. 1(a), where the envelope of “car crash”
has a rapid attack and gradual drop, while that of the “surf” rise
slowly but decay rapidly; for the sounds in Fig. 1(b), the
dominant spectral shapes, shown at right side of corresponding
spectrograms, are highly similar with each other. These figures
clearly indicate that audio representation can be improved by
using such structure patterns. Following our previous work [1],
some improvements on structure pattern extraction are presented
in this paper. Besides refinements of energy envelope and
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harmonicity patterns, a new sub-band spectral shape pattern is
also introduced to give more detail description of spectral
characteristics.

The rest of this paper is organized as follows. The
improvement on energy envelope pattern is presented in Section
2. The new sub-band spectral shape pattern and current
harmonicity description are introduced in Section 3. In Section
4, experiments and evaluations are given.

2. ENERGY ENVELOPE PATTERN

Human’s auditory system is sensitive to evolution phases of a
sound, including attack, sustain and decay, which can be
approximated by using energy envelope [5]. In our previous
work [1], a polynomial curve fitting based clustering method is
proposed to extract representative energy envelope patterns.
However, such an approach often suffers from the numerical
instability in solving the least-squares problem. It is also not
proved the Euclidean distance is preserved in the polynomial
coefficient space.

To solve these issues, wavelet-based approach is utilized to
discover more solid envelope patterns. In our current work, an
iterative clustering algorithm proposed by Vlachos et al. [6] is
utilized in Haar wavelet space, where Euclidean distance is
preserved [7]. The method solves the dilemma of initial centers
choice existed in k-means clustering algorithm. Furthermore, the
iterative process can be stopped at any level to get representative
envelope patterns under different resolution.

In order to find an optimal cluster number, we employ the
cluster validity analysis [8]. The principle is to find clusters that
minimize intra-cluster distance while maximize inter-cluster
distance. The cluster separation measure �(k) is defined as
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where �i is the intra-cluster distance of cluster i, while �ij is the
inter-class distance of cluster i and j. The optimal number of
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and is equal to five in experiments. The five energy envelope
patterns obtained from the database are illustrated in Fig. 2.
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Fig. 2. Five representative energy envelope patterns

The clustering results are similar to those presented in our
previous work, in which each pattern characterizes a typical
process of sound attack, sustains and decay. However, the
wavelet-based method is more robust and faster. To give more
description of an audio segment S, its energy envelope pattern is
characterized as a vector which consists of the distance from it to

each representative pattern, instead of just using a pattern label
as the previous method did.
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where Es is the energy envelope pattern vector of audio segment
S, Dw is the L2 distance between two energy envelopes in wavelet
coefficient space. Experiment in section 4 will show the
efficiency of the new wavelet-based algorithm.

3. SPECTRAL STRUCTURE PATTERN

Time-Frequency Representations (TFRs) of audio signal, such as
the spectrogram, contain the most information for content
analysis. In order to solve the issue of noise sensitivity
introduced by previous method of spectral structure pattern
extraction, Time-Frequency Principal Component Analysis (TF-
PCA) [9] is utilized to detect the most prominent structure in
spectrogram, which is more crucial to human perception [5].
TF-PCA not only reduces the effect of noise, but still keeps
enough information of original spectral representations. The
spectral structure pattern is then extracted from the principle
spectral components.

3.1. Time-Frequency Principal Component Analysis

Suppose an audio spectrogram is represented by X of an N×M
matrix, where N is the number of frequency channels, and M is
the number of time slices, as Fig. 3 shows. Each column of X,
denoted as xj, contains a vector which represents the spectrum at
corresponding time j, while each row can be seen as the spectral
evolution of a corresponding channel over time. One practical
method of carrying out TF-PCA on spectrogram is singular value
decomposition (SVD) [9], which decomposes X into

TUSVX = (4)
where U is an N×N orthogonal matrix, containing the spectral
principle components; V is an M×M orthogonal matrix,
presenting temporal principle components; and S is an N×M
diagonal matrix of singular values. The larger the singular value
is, the more salient the corresponding principle components are.
Fig. 3 shows an example of SVD decomposition and illustrates
the first three spectral and temporal principle components.
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Fig. 3. TF-PCA of a sound effect of “wolf” (only the first three
principle components are illustrated)
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In current work, we mainly focus on the spectral principle
components. In order to get rid of the impact induced by energy
variation in different time slice, and give a clean description of
spectral shape, before SVD decomposition, the spectrogram is
first converted to a decibel scale and each column is constrained
to unit L2-norm, as suggested in [9]:
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3.2. Spectral Structure Patterns

In experiments, it is found that the singular value of the first
principle component is usually greatly higher than others in TF-
PCA process. For the purpose of general feature extraction, we
just keep the first spectral principle component u, i.e. the first
column of matrix U, for subsequential structure pattern analysis.
The spectral structure pattern descriptor is also designed as a
vector, which consists of the spectral shape pattern in each sub-
band and harmonicity prominence.

3.2.1 Sub-band Spectral Shape Pattern
Two characteristics are taken into account to describe the sub-
band spectral shape. One is the variation flux, corresponding to
whether there are salient frequency components. The other is the
average magnitude, describing bandpass or not in the sub-band.
In practice, u is divided into 8 sub-bands equally in Mel-scale,
with 50% overlap between adjacent sub-bands. Two descriptors,
flux measure Sf and bandpass measure Sb, are defined as
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where Li and Hi are the low and high boundaries of the ith sub-
band respectively. The value of Sf(i) indicates the existence
probability of salient frequency components, and Sb(i) gives a
coarse description to the bandpass characteristics in the ith sub-
band.

3.2.2 Harmonicity Prominence Pattern
This pattern is designed to describe how “harmonic” the object
sounds like. Unlike our previous harmonicity descriptor [1],
which assigns the harmonic status in each sub-band to a pre-
defined pattern, harmonicity prominence gives an exact
measurement to present the harmonic level of the whole band.

Considering the characteristic of an ideally harmonic sound,
that is, its full spectrum energy is highly concentrated and
precisely located at those predicted harmonic positions which
are multiple of the fundamental frequency f0, the harmonicity
measurement can be designed according to the following three
factors: i) the energy ratio between the detected harmonics and
the whole spectrum; ii) the deviation between the detected
harmonics and predicted positions; iii) the concentration degree
of the harmonic energy.

Based on the above factors, Harmonicity Prominence
Pattern consists of three components and is defined as
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where fn is the predicted nth harmonic position and defined by

)1(1 2
0 −+= nnffn β (8)

� is the in harmonicity modification factor [10], and is set as
0.0005 in experiments. E(n) is the energy of the detected nth

harmonic contour in the range of [fn-f0/2, fn+f0/2] and the
denominator E is the total spectrum energy. B (n)

r and B (n)
w are

brightness and bandwidth [4] of nth harmonic contour
respectively. Brightness B(n)

r is used here, instead of the detected
harmonic peak, in order to get a more accurate frequency center.
Bandwidth B(n)

w gives a description about the concentrated degree
of nth harmonic. It is normalized by a constant B, which is
defined as the bandwidth of the instance that the energy is
uniformly distributed in the search range. A clear illustration on
the definition of harmonicity prominence is shown in Fig.4.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Hz

E
ne

rg
y

�

�� �� �� ��

�

�

�

�
�
�

���	
��	���

����������	�

� ����

2
0f

2
0f

��
��	��������	�������
	����������
���

�������	�������
	��������	���

��	���
��	��������
	���������
���

Fig. 4. Definition of Harmonicity Prominence Pattern

In the implementation, only the first N (which is set as 4)
harmonic partials are considered in Hp calculation, since only
these harmonic partials are prominent in most conditions.
Furthermore, in case that the fundamental frequency can not be
precisely predicted, f0 is varied in a pre-defined range and each
corresponding Hp is calculated, in which the maximum is chosen
as the value of Harmonicity Prominence Pattern for the sound
object.

4. EXPERIMENTS

To evaluate how these structure characteristics can improve the
audio representation, a content-based audio retrieval system is
built in our experiments. A better representation should improve
both recall and precision of the retrieval system. The baseline
retrieval system is established based on the framework of Muscle
Fish [3], using only the statistics (mean, variance or covariance)
of the following frame-based features: short-time energy,
average zero-crossing rate, sub-band energies, brightness,
bandwidth, spectrum centroid, spectrum rolloff and 8-order
MFCC. The structure patterns are then integrated into the
baseline system, by using weighted sum, following the work [1].

Our testing database contains around 1500 audio clips,
including the database of Muscle Fish. These sounds vary in
duration from less than one second to about 30 seconds; and
include kinds of sounds, such as animals, instruments, vehicles,
human, weapons and so on. About 450 sound effect clips are
used as queries in current experiments.
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Firstly, we compare the performance of three systems: the
baseline, the system integrating baseline with previous structure
patterns proposed in [1], and the system with current structure
patterns proposed in this paper. Fig. 5 illustrates the detail
results of recall and precision curve. It is noted that remarkable
improvements are obtained after integration with current
structure patterns. For example, in the results of top 20, more
than 45% targets are recalled with current patterns, while only
about 35% and 25% are obtained with previous methods and
baseline respectively; the precision is also increased by around
25% using current structure patterns, comparing to previous
patterns. It clearly indicates that much improvement is achieved
for the sound objects representation in our current system.
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Fig. 5. Comparisons of recall and precision ratios between the
retrieval results

Investigating more detail, the efficiencies of individual
structure patterns are also examined, comparing among the
baseline, previous and current temporal patterns and spectral
patterns. Fig. 6 illustrates the detail comparison results of recall.
The improvement given by current spectral patterns is highly
notable, which mainly increases by 50% based on the baseline
system. In comparison with previous methods, the recall ratios
increase by around 11% and 18% with current envelope and
spectral patterns respectively. The results further indicate the
distinct improvements of current temporal and spectral feature
structure patterns.

5. CONCLUSION

This paper presented some improvements on temporal and
spectral structure patterns, in order to get a better audio
representation. Besides refinements of energy envelope pattern
and harmonicity pattern, a new sub-band spectral shape pattern

is also proposed to give more detail description of spectral
characteristics. Evaluations on a content-based audio retrieval
system showed that the proposed structure patterns are effective
supplements to conventional audio representation, which only
uses statistical characteristics.
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