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ABSTRACT

Precision audio content description is one of the key com-
ponents of next generation internet multimedia search ma-
chines. We examine the usability of a combination of 39
different wavelets and three different types of neural nets
for precision audio content description. More specifically,
we develop a novel wavelet dispersion measure that mea-
sures obtained ranks of wavelet coefficients. Our dispersion
measure in conjunction with a probabilistic radial basis neu-
ral network trained by only three independent example sets
obtains a success rate of approximately 78% in identifying
unknown complex classical music movements.

1. INTRODUCTION

Due to the immense and growing amount of audiovisual
data that is available on the world-wide web (WWW), tech-
niques for multimedia content retrieval and classification
are becoming increasingly important. Next generation in-
ternet search machines are expected to be able to understand
and process multimedia content. More precisely, a user
query can be a mixture of multimedia data including text,
voice, picture, and video content. The search machine will
give a reasonable answer providing content that is highly
related to the query and of relevance to the user. An au-
dio content description and retrieval methodology for im-
plementation in internet search machines should allow for
a very compact content representation since there is an im-
mense volume of audio data on the WWW. In addition, the
methodology should allow for an efficient computation of
these descriptors.

In this paper we develop and evaluate an audio con-
tent description and retrieval methodology that is based on a
novel wavelet dispersion measure and is readily applicable
for next generation internet search machines. We find that
our measure efficiently describes the wavelet patterns cor-
responding to the audio content. We find that the wavelet
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dispersion data can be processed by a neural net to real-
ize a computationally effective mapping and classification
technique. We examine the performance of our wavelet dis-
persion measure for 39 different wavelets, different wavelet
scales, and three different types of neural nets. In our per-
formance evaluation we consider the following identifica-
tion problem: the search machine is provided with a perfor-
mance of a classical music movement (piece of a composi-
tion) and the task is to find the same movement in a differ-
ent performance/recording, whereby the performances dif-
fer in time, frequency, sound environments, and recording
quality. We consider four different performances/recordings
of the same 32 movements in our evaluation. By combin-
ing the biorthogonal wavelet with the order numbers 3 (for
reconstruction) and 9 (for decomposition) with the scales
1, 3, 5, . . . , 47 with a probabilistic radial network trained
with three different performances, our methodology achieves
a mean success rate of 78% for identifying the movements
of a performance that is not in the search system’s data base.
The identification success rate for a performance known to
the system is approximatively 100%.

1.1. Related Work

There exists a large body of literature on audio content de-
scription, sound classification, and audio retrieval. This lit-
erature includes audio fingerprinting systems for identifica-
tion of audio songs known to the search system’s data base,
see for instance [1] [2]. Our system differs from these works
in that it identifies unknown complex audio with a high suc-
cess rate.

The existing body of literature also includes retrieval
systems for the categorization of different sounds. Gener-
ally, the system is trained by a number of example sounds
for classification of novel sound segments into elementary
content based classes, see for instance [3][4][5][6][7][8][9][10].
Our system differs from these classification systems in that
it identifies highly complex classical compositions even if
they are from a different performance/recording and in that
it employs a novel wavelet dispersion measure to obtain this
goal.

To the best of our best knowledge, this is the first paper
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to propose a methodology for identifying highly complex
musical audio recordings that are not part of the search sys-
tem’s data base.

2. THE WAVELET DISPERSION VECTOR: A
NOVEL WAVELET DISPERSION MEASURE

In this section we outline our novel wavelet dispersion mea-
sure for extracting the characteristic features of an audio
file. We refer to our measure as wavelet dispersion vector.
To obtain this measure, a wavelet transform with S scales
is performed on the audio data. The obtained coefficients
are stored in a S × T matrix, where T denotes the number
of audio samples. For each scale (represented by a row in
the coefficient matrix), a rank histogram is calculated as ex-
plained by the following illustrative example. Let C denote
the wavelet coefficient matrix. For illustration C has only 3
scales and 5 samples:

1 2 3 4 5
0.43 0.22 0.14 0.76 0.33 1

C = 0.10 0.32 0.11 0.28 0.90 2
0.54 0.49 0.34 0.18 0.91 3

. (1)

The row and column indices do not belong to C. We now
construct the rank histogram for scale 1. For every value
of scale 1 the corresponding rank within its column is esti-
mated:

1 2 3 4 5
0.43 (2) 0.22 (3) 0.14 (2) 0.76 (1) 0.33 (3) 1
0.10 0.32 0.11 0.28 0.90 2
0.54 0.49 0.34 0.18 0.91 3

.

(2)
The number in brackets represents the rank within a column.
For example, the first value of scale 1 (C(1, 1) = 0.43)
obtained the second rank in the first column. This process
is repeated for all scales:

1 2 3 4 5
0.43 (2) 0.22 (3) 0.14 (2) 0.76 (1) 0.33 (3) 1
0.10 (3) 0.32 (2) 0.11 (3) 0.28 (2) 0.90 (2) 2
0.54 (1) 0.49 (1) 0.34 (1) 0.18 (3) 0.91 (1) 3

.

(3)
We now only retain the ranks:

1 2 3 4 5
2 3 2 1 3 1
3 2 3 2 2 2
1 1 1 3 1 3

. (4)

There is some redundancy in this matrix. The third row
can be calculated from the other two rows. We keep this
redundancy for illustration.
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Fig. 1. Performance of wavelet dispersion vector in con-
junction with a maximum correlation measure: Approxi-
mately 60% of the audio pieces are correctly identified.

Now, for each scale (for each row) a rank histogram is
constructed. Thereby the ranks within a row are counted to
obtain the values of the wavelet dispersion measure:

1 2 3
1 2 2 1

Cdisp = 0 3 2 2
4 0 1 3

. (5)

For example, the first row obtained one time the first rank,
two times the second rank, and two times the third rank.
There is again some redundancy in this matrix, i.e., one col-
umn could be left out. We perform a low–complexity re-
dundancy reduction which discards the lowest and highest
ranks of the wavelet dispersion histogram, as these represent
outlying wavelet coefficients, see [11] for details.

The wavelet rank dispersion data is now stringed to be
stored in a vector. For our illustrative example this vector is
given as

�v = [ 1 2 2 0 3 2 4 0 1 ]. (6)

We call this vector wavelet dispersion vector. For every
audio file such a vector can be constructed to represent the
characteristic audio features.

2.1. Performance Evaluation of Wavelet Dispersion Vec-
tor

In this section we give an overview of the evaluation of the
identification and generalization properties of our wavelet
rank dispersion measure. We employ an audio data base
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containing 128 different audio files. Specifically, we em-
ploy six pieces—containing a total of 32 movements—composed
by Johann Sebastian Bach, the Sonatas and Partitas for Solo
Violin, Bachwerkeverzeichnis (BWV) 1001–1006. We con-
sider four different performances of these 32 movements;
specifically, the performances Menuhin 1934–6 (Men36),
Menuhin 1957 (Men57), Heifetz 1952 (Hei52), and Mil-
stein 1973 (Mil75). These audio recordings were chosen
because they have consistent relevance, represent different
levels of qualities, and have polyphonic and not separable
phenomena.

We calculate the 128 different wavelet dispersion vec-
tors for the first five seconds of each of the considered pieces.
We store these vectors in a so-called wavelet classifier ma-
trix. This matrix has always 128 columns. The number
of rows depends on the number of employed wavelet scales
and the dimension reduction technique. Thus there exist dif-
ferent classifier matrices for different wavelet mother func-
tions, different wavelet scales, and different dimension re-
duction parameters.

In Figure 1 we show the results for a search scenario
where the 32 descriptors of the Men36 recording are en-
tered as the user query and the 32x3 descriptors from the re-
maining 3 recordings are employed by the search machine
data base. Each individual Men36 classifier query (x-axis)
is assigned an answer (y-axis) employing one of three clas-
sifier sets. Therefore, on the plot, there are 3 points in
each column, whereby each column represents one of the
32 movements of the Men36 recording. The three points
in a given column represent from left to right the matched
query results in the Men57, Hei52, and Mil75 recordings,
respectively. We initially obtain an answer to a user query
by calculating the maximum correlation between the sin-
gle query-classifier and the 32 different classifiers of one of
the 3 search machine classifier sets. For example, observe
in Figure 1 how a user query containing the second move-
ment of Partita 1 of the Men 36 recording (Men36Pa1ii) is
answered. When employing the 32 column classifier ma-
trix of Hei52, the search machine would identify this piece
as the first movement of Partita 1. This identification is
obtained by the maximum of 32 different correlations be-
tween the Men36Pa1ii classifier and the 32 Hei52 classi-
fiers. The maximum correlations between Men36So1ii and
the 32 Men57 and Mil75 classifiers give the correct answers.
If all points are on the line in Figure 1, then all pieces were
correctly identified. We observe that approximately 60% of
the movements are correctly identified.

Each point in Figure 1 represents an audio retrieval of
only one recording. In the related literature, search and re-
trieval systems are proposed that are trained by many au-
dio files describing the same content. For example, in [4],
more than 48 sound clips of laughter are employed to con-
struct a laughter classifier. In this work, we are interested in
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Fig. 2. Percentage performance of the probabilistic radial
network for the scales 1:2:48. The best performance of 78%
is achieved by the bior3.9 wavelet.

employing a minimum number of audio files to construct a
classifier that already allows for reasonable results. There-
fore, our data base only contains 4 different recordings of
the same pieces. Thus, a piece unknown to the identifica-
tion system can be identified by a classifier that has been
constructed from 3 different recordings, as detailed in the
following section.

3. EVALUATION OF NEURAL NET
CLASSIFICATION

In the preceding section we measured the similarities be-
tween the different descriptors by a correlation measure.
Generally, there are a lot of other possibilities for comparing
the different content description vectors. In this section we
consider three different types of neural nets to process the
wavelet dispersion vectors to answer an audio query. We
combine the wavelet dispersion measure obtained with 39
different wavelets and three different types of neural net-
works. Specifically, we consider the following wavelets
and wavelet families: Meyer wavelet, Mexican hat wavelet,
Morlet wavelet, 7 types of symlets (modified Daubechies
wavelets), 5 types of coiflets, 14 types of biorthogonal wavelets,
and 10 types of Daubechies wavelets. We consider the single-
layer perceptron network, the backpropagation network, and
the probabilistic radial basis network. We refer the reader
to [11] for details on these wavelets and networks.

For each of the 128 (4 performers · 32 pieces) audio
files we perform a wavelet decomposition (wavelet scales
1, 3, 5, . . . , 47) and construct the wavelet dispersion vectors
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as detailed in Section 2. Each vector describes a segment of
the first 5 seconds of an audio file. As we examine 39 differ-
ent wavelets, we calculate 128 · 39 classifier vectors, each
of the length 24 · 24 elements. Thus we obtain a 576x(128
· 39=4992) wavelet classifier matrix. We perform a dimen-
sion reduction as detailed in [11], reducing the dimension of
the wavelet classifier matrix from 576x4992 to 440x4992.
For processing this matrix with the neural nets, each vector
of this matrix is normalized to zero mean and unit standard
deviation.

The neural nets were trained with a minimum of epochs
and neurons to allow an identification of example vectors
known to the identification system with a success rate of ap-
proximatively 100% over the entire range of different wavelets.
Each neural net is trained by example vectors of 3 differ-
ent players to allow a user query of one novel performer,
i.e., a performer not known to the search and retrieval sys-
tem. Thus, there are 4 possible neural net classifier constel-
lations.

Figure 2 reports the retrieval results for the radial ba-
sis network, which gives the best performance among the
three considered networks, see [11]. The 4 different clas-
sifier constellations are indexed by Men36, Men57, Hei52,
and Mil75. One Men36 point reflects the mean success rate
of 32 different user audio queries on the Men36 record-
ing. In this case the search system has been trained on the
recordings Men52, Hei52, and Mil75. If all 32 pieces of the
Men36 recording are correctly identified, the mean success
rate is 100%. The points nov (novel) give the mean success
percentage rate (piece identification) across the four search
constellations. In addition, the points fgp (fingerprint) give
the success rates for scenarios where all four performances
have been used for the training, i.e., the audio query piece
is known to the system.

We observe from the figure that the success rates for
novel data range from 62% to 75% for the Morlet wavelet.
The best mean identification success rate of 78% is achieved
by the bior3.9 wavelet. These results indicate that our method-
ology of combining the novel wavelet dispersion vector with
a neural network achieves good generalization, i.e., identi-
fication of movements that are unknown to the system.

4. CONCLUSION

We have proposed a novel methodology to solve a highly
complex classification problem. Our methodology may form
the basis for an identification service of classical audio move-
ments that are not part of the retrieval system’s data base, a
problem that is likely to arise in next generation Internet
search machines.

We have evaluated the proposed system with 32 differ-
ent movements using a very small training set of 96 move-
ments. Thus one class of the identification system is only

constructed by three different example audio clips using small
extracts with a duration of 5 seconds. The system achieves
a mean success rate of up to 78%.
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