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ABSTRACT
This paper1 presents a scheme for scalable, error resilient cod-
ing of audio signals. The scheme is implemented here as part of
a subband-based audio codec and involves the union of two in-
terconnected ideas: Tree-structured vector quantization (TSVQ)
and reallocation of bits (RoB). The former ensures that the en-
coding procedure results in fixed-length codes while the latter is
a low-complexity scaling algorithm that computes optimal bitrates
for each subband when the bitstream needs to be downscaled to
a lower bitrate. The functionality enabled by these two systems
assumes great importance when the encoded material is to be de-
livered over channels and networks that have a time-varying bi-
trate, such as IP-based wireless networks. Such channels are often
error-prone and the potentially debilitating effects of introduced
errors are mitigated by the inherent fixed-length property of all
codewords. We present results that highlight the performance of
this system under noisy conditions and show that the degradation
in quality is graceful.

1. INTRODUCTION

Scalable source coding has been investigated by researchers for
many years without being implemented in real-world systems. This
fact is likely to change as broadcast and communicative services
are being deployed onto a variety of terminals running over a vari-
ety of networks. Scalable coding can enable such a scenario by al-
lowing for easy and cost-effective content adaptation and transcod-
ing.

This paper presents a scheme for error resilient and fine-grain
scalable audio coding. Unlike most standardized and proposed
audio coding techniques, this scheme does not employ variable-
length entropy coding. The use of such methods for data com-
paction inevitably leads to a varying bitrate (during transmission)
which is susceptible to loss of synchronization in the case of chan-
nel errors. The presented scheme uses fixed-length coding and,
furthermore, has a true fixed rate. That is, the instantaneous bitrate
when transmitting will remain constant (which is not the case for
variable length coding schemes). This is preferable in situations
where the channel/network has an explicit upper limit for band-
with usage.

A low-complexity algorithm for bitrate downscaling is pre-
sented, and it is shown that this has close to no loss of performance

1This work was partly funded by ”Centre for Quantifiable Quality of
Service in Communication Systems, Centre of Excellence” appointed by
The Research Council of Norway. http://www.ntnu.no/Q2S/

(in terms of SNR) when compared to direct encoding at the target
rate. The properties of true fixed rate and error resilience do not
change by employing such bitstream operations.

Our scheme consists of a subband coder using a 27-channel
nonuniform tree-structured filterbank for signal decomposition. Sub-
sequently, dynamic bit allocation based on rate-distortion mea-
sures is used along with tree-structured vector quantization. The
scale factors are quantized using a fixed-length logarithmic quan-
tizer.

This paper is organized as follows: Section 2 discusses the
details of the developed audio codec. The algorithms and details
of bit-rate scalability and error resilience are presented in sections
3 and 4, respectively. Results and concluding remarks are given in
sections 5 and 6.

2. OVERVIEW OF THE CODEC

The basic structure of the encoder-decoder pair is shown in figure
1. The input PCM data is split into 27 subbands, and the needed
segmentation and normalization is performed at the output of the
filterbank. The normalization factors are quantized and used as
input to the bit allocation algorithm. Based on these rate alloca-
tions, different tree-structured quantizers are used for the actual
data compression. In the following, the elements of the developed
scheme are treated in more detail.

2.1. Signal decomposition

A tree-structured nonuniform filterbank that tries to mimic the crit-
ical bands of the human ear [1] by 27 subbands is used. These
bands represent a first order approximation of the ear’s ability to
separate sounds of different frequencies. The tree-structure is built
using 2-channel perfect reconstruction filterbanks of the CQF (Con-
jugate Quadrature Filter) class, optimized with respect to coding
gain. For this optimization, an AR(1)-process with an autocorrela-
tion coefficient ρ of 0.95 is used for modelling the signal in ques-
tion. This choice is motivated by the work presented in [2] and
[3], where maximization of coding gain is shown to be of prime
importance in filter design for coding of audio and images, respec-
tively. The algorithm used for filter optimization is from [4]. The
decision of what filter lengths to use at each split was made based
on an exhaustive testing procedure (maximization of SNR). The
filterbank structure is given in figure 3, where the filter lengths are
given at the intersections.
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Fig. 1. Flowchart of the encoder/decoder

2.2. Segmentation and normalization

The non-stationarity and dynamic range of audio signals is taken
into account by segmentation and normalization after the signal
has been decomposed into subbands. It is typically assumed that
audio signals can be considered stationary over approximately 20ms
[5]. At an input sampling rate of 44.1kHz, a segment length equiv-
alent to 1024 input samples was chosen. This corresponds to a
segment length of approximately 23ms. After taking the result-
ing downsampling factors of each band into account, the number
of samples per segment per subband vary from 4 to 256 across
subbands (see figure 3). Each of these segments is then normal-
ized using the quantized sample standard deviation σ. The nor-
malization with respect to these scale factors will make the over-
all subband probability density functions (pdfs) more Gaussian.
During quantization, however, each segment is treated indepen-
dently. This means that the pdf shapes input to the quantizer do
not change; they are merely scaled.

2.3. Quantization of scale factors

The magnitude of the scale factors is varying with time and fre-
quency, which makes design of appropriate quantizers difficult.
The logarithmic quantizer approach outlined in [6] is used to over-
come this. The representation points are given by

rk = β · αk, (1)

where k is the quantization index and α and β are design pa-
rameters that must be chosen to match the quantizer to the dy-
namic range of the input signal. The normalization error is upper
bounded by the following relation (second order approximation):

Norm. error ≤ x · β
2σ2

· (α
⌈
log σ
log α

⌉
− α

⌊
log σ
log α

⌋
) (2)

The implemented coder can use either 5 or 6 bits to represent k,
while the parameter α varies across bands in order to account for
different dynamic ranges. β is unity for all channels. This implies
that the size of the side information (measured in bits/second) is
constant, regardless of which rate the audio data is encoded at.

2.4. Bit allocation and quantization

The approach taken for bit allocation is the greedy algorithm based
on optimal bit allocation (from [7]):

bi =
B

M
+

1

2
log2

(
σ2

yi

σ2
yg

)
, i = 0, 1, · · · , M − 1 (3)

where bi is the optimal number of bits for component number i,
M is the number of components (subbands), B is the total num-
ber of bits to use for quantizing and σ2

yg
is the geometric mean of

component variances. The greedy algorithm ensures that the bit
allocation step results in rates that are positive integers (this is not
always the case for equation (3)). It should also be noted that (3) is
a high-rate approximation derived for simultaneous scalar quan-
tization of subbands when the resulting downsampling factors are
equal. This makes it somewhat inaccurate for the architecture pre-
sented here. Implementing psychoacoustic models along with the
optimal bit allocation presented in [8] should give better results,
but extensions to vector quantization are needed.

2.5. Quantization

The developed coder uses Tree-Structured (Vector) Quantization
[9], a special case of vector quantizers that exists in different vari-
ants. We propose the use of fixed-length codes (balanced quantizer
trees), since this allows for error resilience and a directly scalable
bitstream. These tree-structured quantizers additionally have the
desirable property of being computationally efficient. For a code-
book size N , only 2 · log2 N distance comparisons have to be
computed when encoding, compared to N for general VQ. Based
on the rates decided by the bit allocation algorithm, the quantiz-
ers to be used are chosen from the library of available quantizers.
The quantizer with the highest dimensionality available for the de-
sired rate is used. In the current implementation, quantizers of
dimensions 8, 4, 2 and 1 are available. Designing one-dimensional
(scalar) quantizers was needed because the computational com-
plexity of designing high-rate multidimensional quantizers is very
high. However, these scalar quantizers are still tree-structured, and
thereby not violating the desired properties of scalability and error
resilience.
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3. BIT-RATE SCALABILITY

The use of tree-structured quantization and no variable-length en-
tropy coding techniques allow for computationally efficient and
accurate bit-rate scalability. Quantizer codewords can simply be
truncated — this is equivalent to stopping decoding at a certain
depth of the quantizer tree. The important question is: What would
be the optimal depth to stop decoding, given a certain target bit
rate? The algorithm presented in the following section describes
a method for estimating this. It can be seen that this algorithm is
optimal with respect to the bit allocation algorithm used.

3.1. ‘Reallocation of bits’(RoB)-algorithm

For close-to-optimal bitrate downscaling, the bit distribution has
to be recalculated. Running the same bit allocation algorithm that
was used by the encoder a second time with the target rate as input
will yield the optimal use of bits for this new rate. The procedure
is outlined in figure 2.
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Fig. 2. Flowchart for the ’Reallocation of bits’ (RoB) algorithm

Note that the second pass must be restricted to using the same
quantizers that were used during encoding. A comparison of the
original and target rates for each subband/timeframe will decide
what the resulting tree depth is. Since the tree depth will be re-
duced by the same fraction for the entire segment (this is a di-
rect consequence of the bit allocation algorithm used), the result-
ing codewords will still inherit the desirable fixed-length property.
Some results on the SNR loss incurred by using this algorithm are
shown in Table 1. It is evident that the loss compared to direct
encoding at the target rate is negligible (in terms of SNR). Since
the bit allocation algorithm is used when generating the down-
scaled bitstream, this scheme can meet any desired target rate.
This separates our scheme from traditional differentially encoded
layer-based coders. The recent MPEG-4 Audio standard imple-
ments Fine-Granular Scalability (FGS) [10] in steps of approxi-
mately 1kbps/channel. However, in MPEG-4 this functionality is
achieved through bit-plane coding and has an operating range of 16
to 64 kbps/channel. The proposed scheme has no such limitations.

Direct Downscaled
Target rate [kbps] SNR [dB] SNR [dB] ∆ [dB]

70 26.012 25.732 -0.280
60 25.685 25.283 -0.402
50 24.951 24.589 -0.362
40 24.107 23.734 -0.373

Table 1. SNR losses (∆) when downscaling to the given rates compared
to encoding directly at these rates. The downscaled data was encoded at
90kbps [mono].
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Fig. 3. Structure of the filterbank. The number of samples for each seg-
ment (and total) for the different channels is given on the right-hand side.

4. ERROR RESILIENCE

Coding methods that employ variable-length entropy coding tech-
niques are subject to loss of synchronization in the presence of
residual channel errors. This is usually mitigated in one of two
ways: Insertion of resynchronization markers or use of reversible
variable length coding (RVLC). The latter was recently proposed
for audio coding in a paper by Zhou et.al.[11]. However, the in-
creased overhead can be considerable if error resilience is impor-
tant (this is especially true in the case of resynchronization mark-
ers). The scheme presented here uses exclusively fixed-length
codewords, both for the quantized data and the side information.
This has the fortunate effect of not increasing overhead, while at
the same time rendering loss of synchronization impossible. Fig-
ure 4 summarizes simulation results when bit errors are introduced
in the encoded bitstream for three different audio clips. The re-
sults show that the incurred SNR loss is moderate at bit error rates
around 10−4; this statement is also true for the perceived quality.
At higher error rates the introduced distortion is indeed audible,
which is to be expected. Most importantly, decoding is possible at
any bit error rate. This obviously does not hold when errors are in-
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Fig. 4. SNR as a function of Bit Error Rate (BER) for three test sequences.
The audio data was encoded at 80 kbps.

troduced in the header information. In this case, the decoder would
fail because erroneous bit allocation tables would be produced.

5. RESULTS AND LISTENING TESTS

The main aim of this work has been to develop an audio coder
that is scalable and error resilient. The implementation has been
tested both for SNR and perceptual performance. Figure 5 shows
the SNR performance of the developed coder as a function of bi-
trate (for monophonic audio). Informal listening tests have also
been carried out; these indicate transparent performance at rates of
80kbps and above. These tests also show a certain ’crystallization’
of the sound at low rates. This stems from the fact that no psy-
choacoustic models are currently implemented — bit allocation is
done based on a rate-distortion measure only. This will favour the
high-energy lower frequency bands at low rates while sacrificing
clarity and crispness in the higher frequency bands.

6. CONCLUSIONS

The coding scheme presented herein has an inherent structure that
allows for low-complexity bitrate scaling with a marginal loss com-
pared to re-encoding at the target rate. The scaling algorithm that
attains this performance is able to meet any desired rate. Inclu-
sion of psychoacoustic models, a more sophisticated bit allocation
algorithm and a larger quantizer library in this scheme will consid-
erably increase efficiency while still maintaining the useful prop-
erties discussed above.
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