
 Abstract

When creating multimedia constructions such as web pages,
games, and animations, it is common to play some sorts of sound
as a ‘loop’, where the sound file is played repeatedly from begin-
ning to end. This is an easy way to extend a short audio sample, but
the repetition is easily detected by a human listener. It is possible to
create new sounds from examples, so that looping is not needed.

1. INTRODUCTION

Most computer users have played a modern computer game, and
have probably been impressed with the quality of the graphics and
the audio. A question that arises on more detailed analysis is
‘where do the sounds come from?’ There may be a background
ocean or wind sound, the sound of engines, rain or even a crowd
cheering. The background or ambient sounds continue for as long
as needed - if the player is called away to answer the telephone or
the door, the sounds could play for many minutes or even hours.

How does this work? In most cases, there is a simple loop, in
which the same brief sound is played over and over until called
upon to stop. This fact is easily detected by the human ear, and usu-
ally becomes irritating after a while. In the case of a game, there
are between 10 and 100 hours of game play included on a typical
game CD. There cannot, of course, be this much novel audio, even
if it were compressed. Without reusing sound sequences, the games
could not present a consistent audio presence, so it is clear that the
sounds have to be reused somehow.

It should be possible to create realistic sounds using computer
techniques, and thus create as much of any given sound as is
needed. Sound synthesis is frequently not sufficiently realistic
(yet); computer created wind or surf sounds often seem artificial.
One way to solve the problem is to use small samples of a desired
sound and to reconstitute them to for a new, longer, and non-
repeating sample. This is the subject that we wish to explore.

What we are attempting to describe here is a method for creating
longer sounding sound textures from short samples. A sound tex-
ture can be described as having a somewhat random character, but
a recognizable quality. Any small sample of a sound texture should
sound very much like, but not identical to, any other small sample.
The dominant frequency should not change, nor should any rhythm
or timbre. The sound of rain falling, surf, fire, wind, a large crowd
- these are all sound textures; music and speech are not. However,
our experience with synthesizing sound textures indicates that
some non-texture sounds can be synthesized using the techniques
to be discussed.

In this paper we will first examine the background work. Next,
we will look at two ways to create sound textures from examples;
these algorithms will be implemented and tested on five small
audio texture samples, creating a longer sample of new sound in
each case.

2. IMAGES VS SOUND

It may seem that creating sound textures from samples would be
easier than creating image textures, but that is not true in practice.
Just as a visual texture in image form can be thought of as a two-
dimensional signal, we can treat a sound texture as a one dimen-
sional signal. These two quite different signals share many proper-
ties, especially where the nature of a texture is concerned. Thus, it
should be possible to extend some of the existing methods for gen-
erating visual textures to the generation of audio textures. In fact,
there are significant complicating factors. One of these, for
instance, is scale - a pixel frequently represents a larger fraction of
an image than a single audio sample does of a typical sound image,
both geometrically and logically. Thus, methods that generate tex-
ture pixels one at a time need to be modified to use audio data
blocks of a significant size.

Sound frequency is usually thought to be analogous to the color
of a pixel. Yet changing the color of a pixel is trivial, while the fre-
quency of a single sound sample cannot be altered - frequency is a
temporal property associated with a collection of samples. Again
and again, a careful examination of the issues shows that audio data
is just as complicated as image data, and in some cases more so.
There is no reason to believe that audio texture generation will be
faster or easier to implement than the methods currently used for
images, or that those methods will adapt precisely to the audio
domain.

3. RELATED WORK WITH IMAGES

There is a respectable collection of background research on texture
generation in computer graphics, especially in the past five or six
years. This is partly due to a burst of activity in the area of image
based rendering. Graphical textures are fairly well studied and there
has been some success with synthesizing them. A brief summary of
some of the texture relevant synthesis methods is therefore in order.

3.1. Tiling and Stitching Based methods
One the easiest methods for building large graphical textures from
smaller ones is to cut pieces from the samples and stitch them
together in a new order. Of course, pieces can be reused, in whole or
in part, allowing much bigger images to be built from smaller sam-
ples. There are various ways to deal with the fact that the seams
between the samples are often visible.

This method is called image quilting by Efros [3]. The method he
describes starts with square sample blocks of a fixed size, with an
overlap between adjacent blocks. Instead of selecting random
blocks to be adjacent, select blocks that have some significant mea-
sure of agreement between them in the overlap region. Smoothing
the edges reduces the visibility of the joins between the blocks but
does not eliminate it.

A second strategy in the category of tiling and stitching methods
is the so-called chaos mosaic [7]. In this method, a simple tiling of
the output image is actually created as a first step. For example, if

CREATING AUDIO TEXTURES BY EXAMPLE: TILING AND STITCHING

J. R. Parker and B. Behm
Digital Media Laboratory

University of Calgary

IV - 3170-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡

the existing sample is 10x10 pixels and we wish to fill a 100x100
pixel output image, then 100 copies of the sample are placed side
by side into the output image. The output image is then iteratively
subjected to a chaos transformation so as to destroy the tiled
appearance.

There are a variety of possible transformations, but the one used
by Xu maps the output image onto itself as follows:

where the image size is m x m and the iteration number is l. This is
Arnold's Cat Map [1].

To correct for the fact that the chaos transformation does not
preserve local features, the transformation is applied to a block of
pixels within the image, and moves entire blocks. Still, the bound-
aries between the blocks can sometimes be seen, and the solution
proposed is to erase a small set of pixels along the boundary and to
force them to fit specifically into the region, thus ‘smoothing’ the
edges. The need for this could be considered a flaw in the tech-
nique, as a second synthesis algorithm has to be implemented just
for this purpose. Fortunately, it is possible to perform a ‘fade’
between the blocks across a small overlap region and achieve an
acceptable visual effect.

4. RELATED WORK WITH SOUND

Nicolas Saint-Arnaud and Kris Popat [4] at the MIT Media Labo-
ratory represent one of the very few efforts to synthesize audio tex-
tures. They describe a two-level representation of sound, where the
low level consists of so-called atomic elements seeded through
time, and the high level is a description of the distribution of those
elements.

Their implementation used a binary tree structured filter to
extract atoms, and at the high level they estimated the probability
of each atom based on the previous ones to build a statistical
model. They used this scheme to generate some simple sounds:
two sine waves, photocopier noise, and applause, but not without
difficulties: clicks and pops appear when not expected, and some
periodicity and flavor was lost.

A relatively old technique called granular synthesis [5] was
tried by bar Joseph [2] in combination with a statistical learning
scheme. The belief that “All sound is an integration of grains, of
elementary sonic particles, of sonic quanta.” [6] has yielded a par-
adigm of sound generation as the creation of many thousands of
brief sound grains that can be linearly combined to form larger
scale sounds, like music. Each grain is an envelope having an
attack phase, a sustain phase, and a release phase, all in a time
period of between 10-50 milliseconds. The method of bar Joseph
attempts to learn the grain structure by decomposing the input
sample audio signal into wavelets, then generating a multiple reso-
lution tree. This tree can then be used to create new collections of
sound grains that have an excellent similarity to the original sam-
ple sound.

It should be mentioned that in all discussions of texture genera-
tion that have been encountered, no effective scheme for objective
evaluation of the methods has been discussed.

5. SIMILARITY IN AUDIO

How do we tell if one generated texture is better than another? We
need a way to compare audio textures against each other in an
objective manner. Subjective measures fail to a great extent due to
the temporal nature of sound; two images can be placed side by
side for comparison, whereas two sounds must be listened to one
after the other. How do we tell for sure when one texture is a little
better than another? This problem must be addressed before an
evaluation of audio texture generation methods can be accom-
plished.

Looking at the problem simply, it is obvious that two different
audio textures will never be identical, even if they represent the
same sound - the random component of each would be unlikely to
agree. The basic properties of a sound sample that are easy to mea-
sure are amplitude, represented by the value at each sample point,
and the frequency, represented by the values in the Fourier trans-
form of the sample. The overall duration of the sound is probably
not relevant, but there may be a phase difference that interferes
with a simple matching procedure - the sounds may include a tem-
poral variability that is not in synchrony, causing a difference to be
observed. These are the essential factors that must be considered
when attempting to compare two sound textures.

The problem of similarity in audio files is too complex to be
summarized here, but the difficulty of the problem should be
understood. For example, we have tried three comparison methods
devised specifically for the purpose of comparing sound textures,
and none could perform better than about 60% success in con-
trolled circumstances, as compared against human perceptions.
Success in a comparison algorithm would provide higher similar-
ity measures between samples that are known to be from the same
source than from those from different sources. Software located on
the Internet fared much worse than our 60% success rate. It was
decided to rate the texture generation methods using two schemes:
to have listeners subjectively rank sounds, and to make the sound
files available on the Internet for anyone to access and evaluate for
themselves. Until much more work has been done on similarity in
audio data, this is probably the best that can be done.

6. AUDIO TEXTURE GENERATION

As a first step towards the generation of a new audio texture, rear-
ranging and concatenating small samples of the source sounds was
tried. The simplest way to do this is to repeatedly copy chunks of
data from random points within the source into a new audio tex-
ture.

Using this method, audible and jarring defects are heard during
the transitions between random chunks. Clearly, a method of
smoothing these transitions is necessary. We use a cross-fade
(Alpha blending) algorithm that blends the tail of the preceding
chunk into the head of the new chunk. The length of the blended
portion is variable, but we found that 15% of the chunk size gives
subjectively good results. The cross-fade between samples helps
minimize the distortion in the transition between random audio
chunks, but does not eliminate it. This is an audio equivalent of the
image quilting idea described above (Figure 1).

Since an audio texture is, by definition, slightly repetitive, it is
not necessary to rely on randomly choosing the next chunk in the
texture. There should always be some number of chunks that could
logically follow the previous chunk. Taking advantage of this
property of textures eliminates distortion along transitions and
enforces the similarity between the source and final texture. We
use a least-squares similarity measure to find the regions in the

xl 1+ xl yl+()mod m=

yl 1+ xl 2yl+()mod m=

IV - 318

➡ ➡

source sample that are similar to the tail (that is, the last 15%) of
the preceding chunk.

Since the chunks originate from the source sample, there is
going to be one exact match, exactly where the tail occurs in the
source. Allowing the copy to continue from this point results in the
original sample simply being copied repetitively into the final tex-
ture, effectively tiling the source. This is undesired in a texture, so
we forbid this behavior.

This method of choosing chunks provides nearly seamless tran-
sitions, but also creates some obvious tiling, or repetition, which
we consider to be a defect in a texture. It is common for this algo-
rithm to get stuck in a loop, in which it returns to a specific spot
after a fixed number of chunks.

A method is needed to encourage the chunk-selection algorithm
to make use of the entire source sample, and not get stuck using
the same regions over and over. This is done using an accumulator
vector of the same size as the source sample. At initialization, this
accumulator is set to zero. When samples are copied out of the
source, the corresponding bins in the accumulator are incremented
by 5. After each iteration of the copy phase, all non-zero elements
in the accumulator are decremented by one. When searching for
the best match using the least-squares similarity measure, as
above, only spaces whose accumulator 'rank' is zero are searched.
If there are not enough consecutive zero-ranked elements to form
the head of the new chunk, then the accumulator is decremented
and the search is run again. This is very similar to the least
recently used (LRU) algorithm used in virtual memory page
replacement.

This technique forces the search algorithm to use all of the
available source material. Sometimes, this results in less-than ideal
matches, but we have found the transitions to be unnoticeable. It is
important to note that when searching for a suitable chunk, only
the rank of the lead-in segment (first 15%) is used. Because of this,
it is still possible for 'popular' segments to be used several times,
but their increasing rank will eventually cause the algorithm to
look elsewhere. It is this behavior that prevents segments from

becoming available in the same order that they were used, and thus
reduces tiling.

The size of the chunks used in all of the above methods deter-
mines to a great extent the quality of the texture. The optimal
chunk size depends on the specific source sample used. Less 'busy'
samples, with a lower incidence of audible features, need longer
chunks to avoid choppiness in the final result. Busier samples
require smaller chunks to avoid audible tiling. By hand tailoring
this size to a specific source sample, very good results can be
obtained, but at the expense of generality.

One way to automatically determine the size of the chunks is
using amplitude peaks. The entire source sample is analyzed for
RMS amplitude, and peaks in amplitude more than 1.5 standard
deviations from the baseline are recorded. The mean and standard
deviation of the observed distance between these peaks is used to
generate the size of each chunk. Hopefully, then, each chunk will
contain one 'feature' that a listener can recognize. This method
works reasonably well on most textures, but is still somewhat
experimental. In the future, we plan to experiment with several fre-
quency-based search strategies to determine the optimal chunk
size. It is possible, however, that there is no method that will cor-
rectly determine optimal chunk size for all inputs.

It is less obvious how to use the chaos mosaic method for audio
textures, since it appears to be fundamentally two dimensional in
character. Still, it is possible to create a two dimensional matrix
from a one dimensional sound simply by filling the matrix row by
row with sampled audio data. The chaos transformation can then
be applied, perhaps many times, and then the sound can be read
out in row-major order.

Because audio data is one-dimensional in character, the applica-
bility of a 2D tiling was not immediately obvious. However, if the
size of a row in the 2D sound sample matrix is exactly large
enough to hold one period at the dominant frequency, or an integer
number of periods, then there will be a logical phase connection
between the rows of the matrix. In our experiments the matrix has
rows with a length that is a multiple of the dominant frequency.

Sound texture file (WAV) length t seconds

Sound texture broken into blocks of equal duration

Generated sound texture
consisting of randomly
selected equal duration
blocks taken from the
original sound file.

Figure 1 - Synthesis of a sound texture using equal size sample blocks.

Two blocks, each with a small overlap region at each end. The sound samples in th eoverlaps are averaged, favoring the
first block at the beginning and the second block at the end.

IV - 319

➡ ➡

In order to create the texture, rectangular regions are copied
from this matrix, T, to a destination matrix, M. First, T is divided
into regions. The width of these regions will affect the quality of
the sound texture in the same way as the chunk size did in our
method above. Fortunately, we have some additional information
available to us in this case. The dominant frequency will logically
be low for less busy sounds, and higher for busier sounds. We can
therefore express the region width as a multiple of this frequency.
Empirical evidence shows that a multiplier of 150 gives acceptable
results for our textures. After the source matrix T is partitioned
into such regions, they undergo a random distortion. Each corner
of the region is moved by a random amount, generated using a nor-
mal function with d = 15% of the box size. After this distortion,
the boxes are copied from T to M using Arnold’s Cat Map [1] to
determine the position of the region within the destination matrix.

Due to the nature of Arnold’s Cat Map, it is unlikely that regions
from the source matrix T will entirely cover the destination matrix
M. In [7] this problem is solved by applying the Cat Map at the
pixel level before regions are copied, creating an “even and visu-
ally stochastic” background from the source pixels to fill in the
uncovered regions. Applying the Cat Map to individual digital
audio samples does not result in a convincing background noise.
We changed the scale to use small blocks of samples, as before,
and applying the cat map to these blocks. The background sounds
became more convincing as the block size grew. An acceptable
background is produced with block sizes on the order of 1/2 of a
second.

Despite the chaotic nature of this system, obvious defects are
audible in any texture with recognizable features. Textures with
few identifiable features - rainfall, for example - can be produced
using this method, but the poor memory efficiency of this method
make it an unattractive choice even for these simple textures.

7. EVALUATION OF GENERATED TEXTURES

Five different sound textures were used to test the synthesis meth-
ods we have discussed. These data are:

a.wav - A crowd b.wav - Flames
c.wav - Light rain falling d.wav - Ocean surf
e.wav - Water lapping on a shore
Synthesized textures of 20 seconds duration were created from

each of the original samples, using each of the methods discussed:
block resampling and chaos mosaic. Only a few of the possible
combinations of parameters could be tested, but some basic con-
clusions can be drawn.

Overall, block resampling appears to yield the best results, fol-
lowed by the chaos mosaic. The ranking was done using the sub-
jective opinion of 30 students and faculty over a period of two
months.

Some further criticisms of the methods we obtained by having
staff experiment with them. The chaos mosaic technique is really

far too slow for practical purposes. Some of the generated textures
show amplitude variations not seen in the original. These can usu-
ally be smoothed by synthesizing with larger block sizes and/or
overlap regions.

All of the original and synthetic sound textures are available on
the web at:

www. cpsc.ucalgary.ca/~parker/AUDIO

The relatively short duration of the samples was intended to
allow rapid download times. Most textures have just one synthetic
result; it has been observed that the audible flaws in the synthetic
output can be eliminated by adjusting the control parameters on
the algorithms (E.G. block size, overlap area, etc.). Note that there
is a total of eight non-texture sounds that have been evaluated, and
are included on the web page for public scrutiny.

8. CONCLUSIONS

We have devised methods for synthesizing audio textures which
work also for selected other sounds, and have found that the pro-
cess can be done in real time, and that the textures created are of
sufficiently high quality to be used in some computer games and
animations. There are audible flaws that require further research
and study in order to correct, but most can be eliminated by (man-
ually) modifying the control parameters of the synthesis software.
We will continue this work by attempting to set these parameters
automatically based on a detailed analysis of the sound sample
provided as the basis for synthesis.

9. REFERENCES

1. V.I. Arnold and A. Avez, Ergodic Problems of Classical
Mechanics, Benjamin, 1968.

2. Z. Bar-Joseph, D. Lischinski, and M. Werman, Granular Syn-
thesis of Sound Textures Using Statistical Learning, Proceed-
ings ICMC, 1999.

3. A. Efros and W.T. Freeman, Image Quilting for Texture Syn-
thesis and Transfer, Proc. SIGGRAPH 2001, Los Angeles,
Aug. 12-17, 2001.

4. N. N. Saint-Arnaud and K. Popat, Analysis and Synthesis of
Sound Textures, Proc. IJCAI-95 Workshop on Computational
Auditory Scene Analysis, Montreal, August 1995, Pp. 125-131.

5. Truax, B. 1988. Real-Time Granular Synthesis with a Digital
Signal Processor. C. M. J. Vol. 12, No. 2, pp 14-25.

6. I. Xenakis, Formalized Music, Indiana University Press,
Bloomington, 1971.

7. Y. Xu, B. Guo, and H. Shum, Chaos Mosaic: Fast and Memory
Efficient Texture Synthesis, Technical report MSR-TR-2000-
32, Microsoft Research, April, 2000.

IV - 320

➡ ➠

