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ABSTRACT

Auditory scene analysis tries to segment an auditory signal
(scene) into objects. Most of the intermediate representa-
tions currently proposed based on ASA are difficult to com-
pute. In this paper, we propose auditory strands and blobs
as intermediate representations. Auditory blobs are parts of
an audio signal which have the same onset. By the princi-
ples of computational auditory scene analysis, they belong
to the same object. In this paper we show how auditory
blobs can be extracted and define harmonicity, dynamics,
and onset features for auditory blobs. We also demonstrate
their application to audio separation.

1. INTRODUCTION

Audio signals are notoriously difficult to analyze. The sig-
nal processing approaches to audio analysis are dominated
by linear prediction and cepstrum analysis. For example,
linear prediction is at the heart of speech coding and cep-
stral features are at the heart of speech recognition. Other
tasks like genre classification also use these features to a
great extent. A fundamental limitation of this approach is
that these techniques are valid only when the audio signal
consists of a single source. If the audio signal consists of
multiple sources, the features do not have the intended in-
terpretation.

Blind separation techniques of signal processing can be
used for audio separation. Independent Components Analy-
sis (ICA) tries to make the extracted sources as statistically
independent as possible. ICA requires as many mixtures
as the number of sources. ICA is a general purpose signal
processing technique and auditory-specific constraints need
to be incorporated for use in auditory separation. See, for
example, [1].

Auditory scene analysis (ASA) [2] provides a refresh-
ing alternative to dominant audio processing approaches.
One major limitation of ASA models is that most of them
use complex auditory filter banks [3] [4] [5]. Most au-
ditory filter banks are nonlinear, complex, and difficult to
invert [6]. Models which work in the familiar short-time
Fourier transform (STFT) domain have wider applicability.

[1] uses a subspace constraint along with independent com-
ponents analysis in the STFT domain. We have recently
proposed a model for audio separation based on ASA in
STFT domain [7]. This model does not use onset informa-
tion. In this paper we propose a model which is primarily
based on onset information. The onset-based objects are
called blobs.

This paper is organized as follows. Section 2 discusses
the principles and models for ASA. Section 3 describes our
technique for measuring onsets and defines intermediate au-
ditory representations: strands and blobs. Blob features and
blob similarity measures are described in section 4. Sec-
tion 5 provides the experimental results for audio separa-
tion. Section 6 closes the paper with a discussion.

2. AUDITORY SCENE ANALYSIS

Just as a visual scene consists of objects, auditory scene also
consists of “auditory objects”. The principles of ASA [8]
are1:

Regularity 1 (Onsets & Offsets): Unrelated sounds sel-
dom start or stop at exactly the same time.

Regularity 2 (Dynamics): Gradualness of change: (a) A
single sound tends to change its properties smoothly and
slowly. (b) A sequence of sounds from the same source
tends to change its properties slowly.

Regularity 3 (Harmonicity): When a body vibrates with
a repetitive period, its vibration give rise to an acoustic pat-
tern in which the frequency components are multiples of a
common fundamental.

Regularity 4 (Dynamics): Many changes that take place
in an acoustic event will affect all the components of the
resulting sound in the same way and at the same time.

Just as a visual scene can be segmented based on color
and texture, auditory scenes can be clustered based on on-
sets & offsets, dynamics, and harmonicity. (In this paper
we address monaural separation - separation of a single au-
dio mixture. Binaural separation uses two mixtures and has
more cues that can be used: interaural time difference, in-

1Terms in parenthesis are ours.
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teraural intensity difference. The availability of several mix-
tures also makes the problem amenable to the use of tech-
niques like independent component analysis [9].)

The above four principles are the most important princi-
ples of ASA. More principles can be found in [10].

2.1. ASA models

There are several models based on these principles.
Cooke [3] uses a gammatone filter, sigmoid nonlinear-

ity, and a hair cell model. The adaptation and recovery of
nerve cell firing provide a convenient way to detect onsets
and offsets.2 Spectro-temporal grouping is based on funda-
mental frequency, amplitude modulation rate, etc. No on-
set information is used. The intermediate representation is
called synchrony strands.

Brown and Cooke [4] use the gammatone filterbank and
Meddis hair cell model. The intermediate representations
are constructed for firing rate, frequency transition, onset/offset,
etc in the form of maps. The onsets are detected using neu-
ral cells that receive initial excitation and subsequent inhi-
bition. They construct symbolic representations called au-
ditory elements. Auditory elements are formed using on-
set/offset information and periodicity.

Ellis [5] uses the a linear model of cochlea. The derived
features are onset maps, correlogram, and periodogram rep-
resentation. Grouping again is based on fundamental fre-
quency. The intermediate representation is called wefts for
periodic sounds. (The other representations are noise clouds
and noise clicks for textures and transients.)

Our previous work [7] does not try to estimate funda-
mental frequency. Harmonicity and dynamic similarity mea-
sures are defined between spectral lines for each frame of
STFT. The spectral lines are clustered using the normalized
cut algorithm [11]. The clusters of adjacent frames are con-
tinued using maximal overlap. The formulation does not use
the notion of onsets. In this paper we propose a formulation
which uses onset as the primary cue. The representation us-
ing only onsets is called blob. We then define harmonicity
and dynamics features of blobs.

3. ONSETS

Onsets are a dominant cue [10]. But detecting onsets is
difficult. Though there are several models for onset detec-
tion, they can be classified into two: based on energy dif-
ferences between successive frames [5] [12] [13] or neural-
network based approaches [14]. Finding onsets based on
energy differences is not reliable. Learning onsets using
neural networks generalizes poorly in the presence of mul-
tiple sources. Also, as an aid for spectral grouping for sep-

2A disadvantage of such models is the presence of a large number of
parameters.
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Fig. 1. Strands. The top row shows the spectrogram
of the original signal and the spectrogram containing
only the spectral peaks. Each “connected compo-
nent” in this peak map is called a strand. The original
signal and a reconstruction based only on strands is
shown in the bottom row. The signal used is the
male speech + female speech mixture (“v0n9.au” in
the database) from the auditory separation database of
Cooke (http://www.dcs.shef.ac.uk/∼martin/).
Only 5000 samples are shown.

aration, onsets need to be defined for each spectral line - a
considerably more difficult task.

The following discussion is motivated by the following
observation. Spectral peaks are perceptually important. We
identify and track spectral peaks. In fact, in the initial stages
of processing only spectral peaks are used. Peaks are sep-
arated by valleys. The energy in the valleys is used in the
final “assembly”.

3.1. Strands & Blobs

We define a continuous evolution of a spectral peak as a
strand. (The term synchrony strands has been used in [3]
for the result of spectral grouping based on fundamental
frequency; such strands may contain multiple spectral lines.
Strands, as defined here, contain one spectral peak per frame.
They may last several frames.) Thus strands have a well-
defined onset and offset (start and end frames). Figure 1
shows the original speech signal and strand-based recon-
struction.

We define an auditory blob as the collection of strands
which have the same onset. Since all the strands in a blob
have the same onset, they are grouped as belonging to the
same source. Auditory blobs of the basic “events” which
take place in the auditory stream. Higher level events can
be obtained by grouping blobs. Grouping blobs instead of
grouping spectral lines or strands is also more efficient and
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Fig. 2. Blobs. The blobs are constructed from the strands
shown in figure 1. Sometimes, blobs correspond to percep-
tible auditory objects. The first blob, for example, accounts
for major part of one source (male voice). Most of the re-
maining blobs constitute the second source (female voice).

reliable. It is more efficient since there are fewer blobs than
spectral lines or strands. It is more reliable since blobs carry
more source-specific cues than individual spectral lines or
strands. Blobs, as defined here, are extremely easy to ex-
tract. Figure 2 shows the blobs corresponding to the mixture
signal of figure 1.

4. BLOB FEATURES AND SIMILARITY

To use blobs for classification and separation tasks, we need
to define features for blobs. We define the frequency, har-
monicity, and dynamics features of blobs (F, H, De, and
Df ) as follows. In the following discussion, we use the
terms “frequency” and “frequency index” interchangeably.
Frequency indexes are integers.

Frequency content: A blob is a collection of points in
time-frequency plane defined by STFT (with certain con-
tinuity and onset constraints). We can denote a blob as
(t1, f11, f12, · · · , f1n1), (t2, f21, f22, · · · , f2n2), · · ·
(tm, fm1, fm2, · · · , fmnm). Here t1, t2, · · · , tm are the frame
indexes and fij is the jth frequency for frame ti. The col-
lection f11, f12, · · · , f1n1 , · · · , f21, f22, · · · , f2n2 , · · · ,
fm1, fm2, · · · , fmnm describes the frequency content of the
blob. The histogram of these frequencies defines the feature
F .

Harmonicity: A fundamental feature of a blob is its har-
monicity which can be defined as the underlying fundamen-
tal frequency of the blob. To calculate the fundamental fre-
quency, we cannot mix frequencies at different frame in-
dexes. (Frequencies at different frame indexes were com-
bined for the feature F above.) We define the difference
histogram as a measure of the harmonicity of the blob. Con-
sider the differences: f12−f11, f13−f12, · · · , f1n1−f1,n1−1,
f22−f21, f23−f22, · · · , f2n2−f2,n2−1, · · · fm2−fm1, fm3−
fm2, · · · , fmnm − fm,nm−1. We define the histogram of
these differences to be a measure of harmonicity. In the
example above, the differences are: 5, 5, 7, 16. This accu-
racy of this representation increases as the number of time-

frequency points increases. This feature, H , is also able to
capture time varying periodicities.

Energy Dynamics: A blob has multiple strands (of pos-
sibly different lengths). The sum of the energies of these
strands defines the energy dynamics, De, of the blob. If we
use the above notation, the vector of sums

[
∑n1

j=1 E(t1, f1j),
∑n2

j=1 E(t2, f2j), · · · ,
∑nm

j=1 E(tm, fmj)]
defines the energy dynamics where E(t, f) denotes the

energy of frequency index f at time t.
Frequency dynamics The frequency dynamics, D f , is

defined as the vector of weighted sums [
∑n1

j=1 f1jE(t1, f1j),∑n2
j=1 f2jE(t2, f2j), · · · ,

∑nm

j=1 fmjE(tm, fmj)]
This vector is component-wise normalized by the en-

ergy vector, De, computed above.

4.1. Blob similarity

We can define similarities of two blobs, (F 1, H1, D1
e , D

1
f )

and (F 2, H2, D2
e , D

2
f ) as the similarities of their features.

In particular, we define the following similarities.
Frequency similarity (SF ): This is the intersection of the

histograms F 1 and F 2.
Harmonic similarity (SH): This is the intersection of the

histograms H1 and H2.
Dynamic similarity (SD): The blobs may have different

onsets and offsets. The common temporal interval for both
the blobs is computed. The cosine similarity between the
subvectors corresponding to this common interval is taken
as the dynamic similarity. This is computed for both De and
Df . We require that the size of the common interval be at
least two for this similarity to be computed. Otherwise, the
similarity measure is set to zero.

The cumulative similarity is calculated as e
SF
σF ×e

SH
σH ×

e
SD
σD where the σs are normalizing constants.

That the above measure takes onsets and offsets indi-
rectly (through SD). A direct way to measure onset similar-

ity is to use the following: e
|t1−t2|

τ where t1 and t2 are the
onset times of the two blobs and τ is a constant.

5. EXPERIMENTS

The term “blob” is inspired by “blobworld” representation
of images [15]. Image segmentation is a difficult problem.
“Visual Blobs” of [15] are regions which correspond to ob-
jects or parts of objects. The motivation for auditory blobs
is the same: auditory blobs correspond to auditory objects
or parts of objects. We expect auditory blobs to find appli-
cations in audio retrieval, coding, etc. As an example, we
consider audio separation in this paper.

Auditory blobs need to be grouped into objects. As
mentioned in section 2, auditory sources obey harmonic-
ity, dynamics, and onset constraints. We use the similarity
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Fig. 3. Blob-based separation. The first two figures shows
the separated and reconstructed source signals. The next
two show the original signals. The blobs of figure 2 were
clustered into two clusters using the normalized cut seg-
mentation algorithm using the similarity measures defined
in section 4. Only the spectral peaks were used in inver-
sion. It is possible to improve the quality of this “skeletal
reconstruction” by “filling in” using the spectral lines in the
valleys between the peaks.

measure defined in section 4.1 to construct the blob simi-
larity matrix and subject the similarity matrix to normalized
cuts segmentation [11]. The results are shown in figure 3.

6. DISCUSSION

In this paper we have used ideas from auditory scene analy-
sis (peaks and onset times) to propose a new representation
scheme for auditory blobs. We have defined a set of fea-
tures for auditory blobs - again inspired by ASA. We have
demonstrated the use of auditory blobs and their features in
the task of speech separation. Our formulation makes au-
ditory scene analysis very close to visual segmentation not
only in spirit but also in details. More experimental support
is needed to show that the formulation is robust.

It is instructive to compare blobs as intermediate repre-
sentations with those mentioned in section 2.1.

1 All the models mentioned in section 2.1 use the fun-
damental frequency as the major cue. Fundamental fre-
quency is computed using autocorrelation techniques. Our
own view is that finding fundamental frequency of blobs
is more reliable than finding the fundamental frequency of
ungrouped mixture. As mentioned in section 4, the collec-
tion of strands that constitute the blob carry fundamental
frequency information in a more readily extractable form
since they belong to the same object. We have used differ-
ence histograms to characterize harmonicity. Autocorrela-
tion techniques can also be used.

2 All the other intermediate representations are obtained
after substantial processing. Blob can be obtained more eas-
ily. There are very few parameters. This enables them to be
usable in other applications.

3 The other representations are based on auditory filter
banks. STFT-based blobs have wider applicability.

Blobs do not account for all audio signals. Audio tex-
tures do not show persistent evolution of spectral peaks.
Hence is is difficult to use blob-based representations for
auditory textures. Other grouping principles are needed to

identify audio textures.
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