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ABSTRACT
We consider the problem of segmenting an audio signal into char-
acteristic regions based on feature-set similarities. In the proposed
approach, a feature-space representation of the signal is generated;
sequences of these feature-space samples are then aggregated into
clusters corresponding to distinct signal regions. The algorithm
consists of using linear discriminant analysis (LDA) to condition
the feature space and dynamic programming (DP) to identify data
clusters. In this paper, we consider the design of the dynamic pro-
gram cost functions; we are able to derive effective cost functions
without relying on significant prior information about the struc-
ture of the expected data clusters. We demonstrate the application
of the LDA-DP segmentation algorithm to speech / music discrim-
ination; experimental results are given and discussed.

1. INTRODUCTION

Segmentation of audio signals into meaningful regions is an es-
sential component of many applications, for instance speech / mu-
sic discrimination for broadcast transcription, transient detection
for window-switching audio coders, audio thumbnailing, and de-
marcation of songs in continuous streams for database creation or
smart transport. Such applications rely on a basic signal under-
standing provided by automatic segmentation.

Segmentation approaches described in the literature generally
represent the signal as a sequence of features in a meaningful fea-
ture space and then attempt to identify points-of-change in the fea-
ture sequence using statistical models or various distance metrics
[1, 2, 3]. In this paper we present a novel approach similarly based
on intuitive signal features but which does not rely on the heuristic
hard-decision thresholding typical of other methods.

In the proposed algorithm, the segmentation task is interpreted
as a feature-space clustering problem. First, the feature-space clus-
tering behavior is improved by the use of linear discriminant anal-
ysis trained on representative examples; then, a dynamic program
is used to derive robust robust segmentation points – which corre-
spond to cluster transitions in the problem framework. We describe
the structure of the dynamic program and derive cost functions
which lead to robust clustering.

The LDA-DP segmentation algorithm was initially described
by the authors in [4]. Here, we elaborate on the design of the dy-
namic program and focus on the specific application of the LDA-
DP method to the task of speech / music discrimination (SMD). We
illustrate how the LDA conditions the feature space for clustering
but does not serve as an effective stand-alone clustering solution,
and we demonstrate how the DP in the conditioned feature space
is able to robustly detect points of change in the SMD task.

2. FEATURE SPACE

An audio signal can be represented in a feature space by carrying
out a sliding-window analysis to extract feature sets on a frame-
to-frame basis. In such a scheme, each hop of the window w[n]
yields a new set of features; for the i-th frame:

w[n]x[n + iL] � Feature analysis � fi{x} (1)

The output of the feature analysis block is the feature vector fi{x},
which will be treated as a column vector fi. Examples of features
relevant to the audio segmentation task include zero-crossing rate,
subband energies, spectral envelope, centroid, tilt, and flux, and
so on [2]; similar features are used in music information retrieval,
audio fingerprinting, and other content-based applications [5]. The
selection of features is a key aspect in the performance of such sys-
tems; for instance, if the feature set used in fingerprinting does not
exhibit sufficient differences for different songs, the fingerprinting
will not perform robustly. One of the design goals in the proposed
segmentation scheme is to avoid the pitfalls of feature selection;
our approach is to incorporate a wide array of features and apply
prior training to weight those features appropriately for the task.

2.1. Segmentation by feature-space distance

The sequence of feature vectors fi provides a feature-space repre-
sentation of the input signal from which a variety of similarity (dis-
similarity) metrics can be computed for successive feature vectors.
A typical metric is the vector difference norm

dij = (fi − fj)
HDHD(fi − fj), (2)

where DHD is the identity matrix for the Euclidean distance, the
inverse covariance matrix of the feature set for the Mahalanobis
distance, or some other feature weighting specific to the particular
distance measure. The sequence of differences between succes-
sive feature vectors is then an example of a novelty function which
attempts to quantify the extent of change in the audio signal be-
tween adjacent frames [3]. Feature-based segmentation schemes
typically determine segment boundaries by finding peaks in the
novelty function; these are taken to indicate points of change in
the audio signal, i.e. there is a change if successive features fi and
fi+1 are deemed dissimilar enough [2, 3].

In novelty-function segmentation approaches, a heuristic thresh-
old is used to make the decision as to whether successive frames
are substantially dissimilar to indicate a segmentation boundary.
As illustrated in [4], this is problematic in that typical novelty func-
tions tend to exhibit peaking not only in the vicinity of segment
boundaries but also within segments. As a result, peak-picking
can readily lead to incorrect segment boundary determinations.
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2.2. Segmentation as clustering

This spurious peaks in novelty functions can be understood by
considering segmentation as a clustering problem: clusters of data
corresponding to distinct segments are observed sequentially; seg-
mentation is equivalent to finding the transitions between clusters.
The distance between successive features in the same cluster (seg-
ment) can rival or exceed the distances between features in dif-
ferent clusters, so novelty peak-picking can indicate faulty mid-
cluster segmentation boundaries.

The extraneous novelty peaks tend to be most pronounced for
the Euclidean distance since the distance measure be dominated
by features having large variance within a cluster but little value in
discriminating between clusters. As an alternative, Mahalanobis
feature weighting can be used; this essentially normalizes the con-
tribution of each feature, which is reasonable if no prior infor-
mation is available about the relative discriminatory value of the
various features, but it may tend to devalue the most discrimina-
tory features. If representative examples of the desired clusters are
available a priori, linear discriminant analysis (LDA) can be car-
ried out on those examples to yield a feature-space transformation
which accentuates the discriminatory features. Using the LDA ma-
trix in the weighted distance of Eq. (2) yields a novelty function
which tends to display less peaking within clusters and stronger
peaking at the cluster transitions. This improvement occurs be-
cause the LDA is trained to sphere the data classes and separate
the class means [6]; the improvement is notable for clustering of
new data if the training set is representative of the desired clusters.

A further benefit of LDA is that it addresses the feature selec-
tion problem. The feature samples in the LDA training classes can
contain an arbitrarily large number of features. The LDA training
determines the best linear combination of these features to sepa-
rate the data classes while projecting the data onto a subspace with
dimension equal to one less than the number of training classes
(or fewer). LDA thus results in dimension reduction as well as
automatic management of the relevance of the raw signal features.

While the use of LDA-weighted distance does improve the
problem of spurious peaking, such peaks still occur. The reason for
this is a basic shortcoming of the novelty function: it is designed to
identify local changes between samples; global changes between
groups of samples, however, are of greater importance to the seg-
mentation task. LDA does not resolve this issue entirely since it
is not at all designed to enhance inter-sample novelty but moreso
inter-cluster novelty. The spurious peaks arise when two succes-
sive samples within a single cluster are further apart than succes-
sive samples in different clusters, which is a common occurrence
in tightly packed feature spaces – even after a clustering transfor-
mation such as LDA. What is needed instead of a local novelty
measure, then, is a detection of global signal trends. In the next
section, we describe a dynamic program which essentially looks
for the means of subsequences and identifies segmentation bound-
aries when the samples start to aggregate around a new mean.

3. DESIGN OF A DYNAMIC PROGRAM FOR
IDENTIFYING SEQUENTIAL CLUSTERS

The segmentation problem differs from standard clustering prob-
lems in that the clusters arrive sequentially. In this section, we dis-
cuss the structure and design of a dynamic program which takes
into account the sequential nature of the feature clustering in the
segmentation framework. We describe how to choose cost func-
tions for the DP such that it detects transitions between successive
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Fig. 1. Partial state transition diagram of the dynamic program
for feature-space clustering. The label corresponds to the feature
vector associated with the state; state Sij has feature vector ai.
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Fig. 2. In the dynamic program for feature-space clustering, the
diagonal (dotted) is the nominal feature path. A candidate cluster
path with one transition is shown; there is a transition cost as well
as a local cost for being in any state that is not on the nominal path.

clusters; the optimal path in the DP follows the general trend of
the feature aggregation and is robust to feature-space outliers and
spurious peaks in the intra-cluster distance.

3.1. Structure of the dynamic program

Given the LDA-transformed feature sequence {ai}, which will ex-
hibit better clustering than the raw data {fi}, dynamic program-
ming can be used to find cluster transitions. Assuming there are
N feature sets in the sequence, an N × N state machine such as
that in Fig. 1 is constructed. For each time frame j, there are N
candidate states; letting i be the vertical state index, each state Sij

is associated to the feature vector ai as shown in the figure.
The diagonal path of the state transition diagram in Fig. 1 cor-

responds to the nominal feature-space trajectory of the signal: at
time j, the nominal path is in state j, whose state vector is aj ,
namely the actual features generated by the signal at that time.
The nominal feature path is depicted in Fig. 2 along with a can-
didate cluster path; the objective of the DP will be to find such a
path which indicates cluster transitions. As shown, the cluster path
is a stepwise traversal of the state transition diagram. Each plateau
in the path corresponds to a cluster and each step is a transition be-
tween clusters; the feature vector for a cluster plateau is the char-
acteristic feature set for that cluster. More specifically, then, the
objective of the DP is to find this characteristic feature set for the
nominal local sequence of feature vectors and then to transition
when this characteristic set is no longer a good representative of
the nominal features. This objective can be achieved by judicious
design of the DP cost functions.
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3.2. Cost function design

Recall that DP is able to find a path through the state diagram
which optimizes some specified cost function which can be com-
posed of a local cost for each state as well as costs for transitions
between states. Denoting a path through the DP as p[j] and the
nominal path as n[j] = Sjj , we can express the optimal path r[j]
as

r[j] = arg min
p[j]

∑

j

αL (p[j], n[j]) + βT (p[j], p[j − 1]) (3)

= arg min
p[j]

{αCL(p[j]) + βCT (p[j])} (4)

where L and T are the local and transition cost functions, α and
β are relative weights for the costs, and CL and CT are aggregate
totals for the components costs for a given path. The objective
of the dynamic program design is to choose the cost functions L
and T such that the resulting optimal path indicates a trajectory
through clusters which are representative of the nominal feature-
space trajectory. We consider these component costs in turn.

The local cost should reflect how reasonable it is to be in state
i at time j. Recall that we want the final trajectory to be composed
of horizontal segments separated by transitions. In any horizontal
segment of this desired cluster path, we remain in the same state
i0: the local cost of state i0 at time j (Si0j) should be small if the
feature vector measured in the signal at time j (the one associated
to the nominal state Sjj) is similar to the feature vector associated
to state i0, and high otherwise. This ensures that along a horizontal
segment the successive feature vectors extracted from the signal
are similar to the feature vector ai0 that represents that segment.
An intuitive choice for the cost function is the Euclidean distance
||ai − aj || or some weighted distance (ai − aj)

HΦ(ai − aj) so
that the cost of being in state Sij is the distance between the feature
vectors of that state and of the nominal diagonal state Sjj for that
time index. The states between which the local cost distance is
measured are indicated in Fig. 2.

The aggregate local cost for a candidate path is the sum of the
local costs for the states in the path. For the Euclidean or any sim-
ilar distance measure, this is clearly zero for the nominal diagonal
path. Assuming for the moment, however, that the transition cost
is infinite such that a horizontal path must be chosen, we now show
that if we adopt this choice of weighted distance, minimizing the
total cost results in a horizontal path characterized by an appropri-
ate representative feature vector. Considering a set of N feature
vectors and letting am be the single feature vector of the chosen
horizontal path, the aggregate local cost for the path is

CL =

N−1∑

j=0

L(am, aj) =

N−1∑

j=0

(am − aj)
HΦ(am − aj) (5)

which is minimized if am is the mean of the set; am must however
be chosen from the sample set. To find the best choice, we write:

CL =

N−1∑

j=0

(am − ā + ā − aj)
HΦ(am − ā + ā − aj) (6)

= N(am − ā)HΦ(am − ā) +

N−1∑

j=0

(aj − ā)HΦ(aj − ā) (7)

where the cross-terms in the expansion of Eq. (6) cancel since ā is
the set mean. Noting that the second term in Eq. (7) is not depen-
dent on am, we see from the first term that the optimal choice am

is the set member closest to the mean. Thus, the optimal horizon-
tal path is the path which stays in the state whose feature vector
is closest to the mean of the set. In the clustering framework, this
feature is the closest member of the cluster to the cluster mean and
is the optimal choice to be a representative of the cluster.

The transition cost can be formulated by considering several
constraints. First, a high cost should be associated to switching
from state i to state j if the corresponding feature vectors are sim-
ilar; however, there should be zero cost for a transition from i to
i (since we are looking for horizontal paths). Conversely, the cost
should be small for a transition between very dissimilar feature
vectors (so real transitions in the audio are not missed). An intu-
itive choice for the transition cost between two states is then the
inverse of the Euclidian or some weighted distance between the
corresponding feature vectors; a constant cost can also be added
for any non-horizontal transition to further favor clustering into
horizontal segments. As an aside, if we consider the two-cluster
case where a path with one transition is desired instead of a strictly
horizontal path, we find that the transition cost between the two
cluster means should be upper-bounded so that it would be out-
weighed by the local cost of just staying in a horizontal path:

T (m0, m1) <
N0

2
(m0 − m1)

HΦ(m0 − m1), (8)

where N0 is the cluster size and m0 and m1 are the cluster means.
Some prior knowledge about the structure of the data clusters (such
as the size and mean spacing) can thus be helpful in scaling the
transition cost appropriately.

We can furthermore incorporate a transition bias cost which
depends not on the source and target state feature vectors but rather
on their vertical state indices, namely their nominal time indices
in the feature vector sequence. For the segmentation task as de-
scribed, only horizontal or downward transitions are allowed in
the DP; for some signal analysis applications, though, it could be
useful to include upward transitions in the state diagram and then
apply a bias cost to either encourage or discourage revisitation of
past clusters. Also, we can impose a lower bound on the size of
identified clusters by discouraging or disallowing jumps to indices
nearby in the nominal time sequence.

If these local and transition cost functions are used in the DP,
the LDA-DP segmentation algorithm robustly identifies segment
boundaries. The performance of the LDA-DP segmentation by
clustering was demonstrated in [4] for some general audio seg-
mentation tasks; audio examples are available online [7].

4. SPEECH / MUSIC SEGMENTATION AND
DISCRIMINATION

There are many audio content management scenarios which would
benefit from the ability of some front-end processing to robustly
distinguish speech from music. For instance, automatic transcrip-
tion of broadcast news calls for segmentation of the actual news
from musical tag-lines and the like. Another application calling
for speech/music discrimination (SMD) is smart transport within a
broadcast radio stream; given sufficient buffering, boundaries be-
tween songs and commercials or DJ talk could be identified and
then used as markers for replay or skip-ahead transport controls.

A variety of approaches to SMD have been presented in the
literature. Generally, these rely on a hypothesis testing frame-
work: for an observation of signal features, choose the hypothesis
(speech or music) which is most likely to be correct. In short, given
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Fig. 3. The distribution of the scalar SMD feature for (a) the train-
ing set and (b) a radio broadcast stream.
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Fig. 4. Plot of the scalar LDA feature (solid) and the cluster fea-
tures derived by the dynamic program (dashed) for a stream of
material from the training set. The vertical lines indicate the actual
transitions.

models of speech and music statistics, a new signal feature is clas-
sified as either speech or music based on maximum likelihood or
some penalized likelihood function such as the Akaike Information
Criterion or Bayesian Information Criterion [8]; in some systems,
these methods look at a sequence of feature vectors and evaluate
the likelihood that a change in the generating model (speech or
music) occurred within that sequence.

4.1. Application of the LDA-DP algorithm to SMD

The LDA-DP approach can be readily tailored to SMD. First, the
LDA is trained on samples of speech and music. Since there are
two data classes, the result of the LDA transformation is a one-
dimensional projection of the raw feature data; the LDA matrix A
is an 1 × N vector and each LDA feature ai = Afi is simply a
scalar. Scalar features for the speech and music classes used in the
LDA training are depicted in Figure 3(a), where the feature values
have been binned to show rough distributions for each class. Here,
it is clear that the LDA separates the prior classes well enough that
new data similar to the training set could be accurately classified
using a simple thresholding decision. When the LDA projection
is carried out on a signal not from the training set as in Figure
3(b), the clusters are not necessarily well separated and a decision
threshold would lead to major errors. In this case, the broadcast
radio stream segments are not at all similar to the training set [7];
in less degenerate cases, better clustering would be apparent, but
this example was chosen to illustrate the effectiveness of the DP.

Figure 4 shows the operation of the LDA-DP on material drawn
from the training set. The solid line depicts the nominal scalar
LDA features ai, which display significant discrimination between
the speech and music segments. The dashed line is the scalar fea-
ture sequence for the optimal cluster path derived by the DP; note
that these features correspond to the means of the nominal features,
and that the DP finds the actual transitions without error.

Figure 5(a) shows the nominal scalar LDA features and actual
transition points for a radio broadcast stream consisting of com-
mercials, a full song, DJ talk, and the start of another song. These
features show some minor trends but no definitive content discrim-
ination; this is because the stream content is substantially different
from the training set and indeed includes some speech-on-music
regions. Despite the training mismatch, the DP is still able to lo-

0 100 200 300 400 500 600 700 800 900 1000
−20

0

20

0 100 200 300 400 500 600 700 800 900 1000
−8
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−4
−2
0

(a)

(b)

Frame index

Fig. 5. Plot of (a) the scalar LDA feature and (b) the cluster fea-
tures derived by the dynamic program for a radio broadcast stream.
The solid lines indicate the actual transitions.

cate the content transitions. The one apparent error occurs at a
point in the song where the dynamics change considerably.

Note that the training class densities in Fig. 3(a) suggest a
speech/music decision threshold near zero. Such a threshold would
accurately classify the commercial as speech but not the speech-
on-music DJ talk in the fourth identified segment. From this we
can conclude that a more representative training set would be valu-
able for the strict SMD task, but the identification of speech/music
segmentation boundaries can be carried out by the DP robustly
even with significantly mismatched prior training.

5. SUMMARY

We have described a two-stage audio segmentation scheme wherein
signal features are first extracted and transformed via LDA to opti-
mize cluster scatter and then clustered using DP. The LDA-DP rou-
tine converts a feature-space trajectory into a cluster-space trajec-
tory wherein cluster transitions indicate points of significant global
change in the signal. The system is general and can be tailored for
various applications by appropriate selection of the signal feature
set, training set, and DP cost functions. The LDA-DP was shown
to provide meaningful content transitions for the speech/music dis-
crimination task even with mismatched LDA training.
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