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ABSTRACT

This paper proposes a Bayesian method for polyphonic mu-
sic description. The method first divides an input audio
signal into a series of sections called snapshots, and then
estimates parameters such as fundamental frequencies and
amplitudes of the notes contained in each snapshot. The
parameter estimation process is based on a frequency do-
main modelling and Gibbs sampling. Experimental results
obtained from audio signals of test note patterns are encour-
aging; the accuracy is better than 80 % for the estimation
of fundamental frequencies in terms of semitones and in-
strument names when the number of simultaneous notes is
two.

1. INTRODUCTION

This paper proposes a Bayesian method for polyphonic mu-
sic description, where description means estimating param-
eters, such as fundamental frequencies, amplitudes, and in-
strument names, for the musical notes in an input sound
signal. It is assumed that the input sound can be a monau-
ral signal containing multiple simultaneous musical notes.
Applications of the description we have in mind includes
a “queries by polyphonic music” task in music information
retrieval [1, 2].

Recently, many researchers have addressed music infor-
mation retrieval based on audio signals. Their methods can
be classified into two groups according to their objectives.
One aims at retrieval of segments that are almost the same
as the query by a signal level comparison. This approach
has recently been referred to as audio fingerprinting. In
this case, audio signal features, such as the spectrum fea-
ture, are used for the search [3]. The other group aims at
retrieving segments “similar” to the query in some way, such
as a segment having the same melody or a rearrangement
of the music. It is difficult to accomplish this task solely by
signal similarity, because re-takes, tempo variations, rear-
rangements, and many other factors alter the audio signals
of music pieces considerably even if they are the same music
in a title. Therefore, a certain description extracted from
an audio signal is needed.

A typical method in the latter group is “query by hum-
ming” based on melody similarity. For example, Ghias et
al. proposed monophonic melody matching using a melodic
contour that represents the melody as strings of relative
pitch (’U’, ’D’, and ’S’) and showed its effectiveness [4].
So far, many related works have also been based on mono-
phonic melody matching. However, this approach is not
directly applicable to the task of polyphonic music retrieval
by polyphonic music queries.

On the other hand, a considerable number of works tar-
geting automatic music transcription, music scene analy-
sis, or music scene description have been reported [5, 6, 7].
However, polyphonic music transcription is still a challeng-
ing task. Specifically, recognising multiple notes existing at
the same time in a monaural signal is a difficult problem.

Here, we address estimation of multiple notes from the
viewpoint of Bayesian modelling. This is because the Bayesian
approach allows us to address the problem in terms of a
unified probabilistic framework. In the music domain, only
a few Bayesian approaches can be found in the literature
[8, 9]. Of particular relevance to this current work is the
one by Godsill and Davy, where a time-domain Bayesian
harmonic model for musical pitch estimation was proposed
[9]. In this paper, notes are modelled in the frequency do-
main to reduce computational cost, and to provide a sim-
ple framework to incorporate music-level statistical infor-
mation, such as note or chord transition probabilities, into
the processing.

Section 2 first describes a method to divide an input
audio signal into processing windows, and then presents the
parameter estimation method performed on each processing
window. Section 3 shows experimental results. Section 4
gives conclusions.

2. METHOD

2.1. Processing window (snapshot) extraction

This section overviews the idea of SNAPs (Simultaneous-
Note-set Alteration Points) and the “snapshot”, which were
proposed by Nagano, Kashino, and Murase [10].

A SNAP is a point in time when at least one note begins
in a music audio signal. That is, a SNAP is the time when
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Figure 1: A frequency component and SNAP-CCs

a set of sounding notes changes according to onset of a
new note. We refer to the section between the adjacent
SNAPs as a snapshot. The snapshot serves as a processing
window for the succeeding parameter estimation process.
Note that SNAP is similar to the idea of beat, but they
are different in that generally there can be no (or multiple
successive) onsets in one beat section. We introduce SNAP
because our objective is to obtain a processing window for
the estimation process rather than tracking musical beats.

SNAPs are extracted in the following process.
(1) Perform frequency analysis on an input signal to

obtain a spectrogram. In our experimentation, a bandpass
filter bank equally-spaced on a log frequency axis is em-
ployed for this purpose.

(2) Extract frequency components. A frequency compo-
nent is a series of spectral local peaks on the spectrogram.
The extraction is done by connecting spectral local peaks
along the time axis.

(3) Extract SNAP contribution candidates (SNAP-CCs).
A SNAP-CC is a point on a frequency component where the
power forms a local minimum [6]. In addition, the starting
point of a frequency component is always a SNAP-CC. Fig.
1 shows a freqency component and the times of SNAP-CCs.

(4) Calculate SNAP probability Pi for all SNAP-CCs
using the following equation:

Pi = 1 −
∏
j∈Γi

(
1 − pj exp

(
− (ti − tj)

2

∆T 2
i

))
, (1)

where pj is the probability that point j is the onset of a note
(pj can be estimated depending on the power variations of
the frequency component), ti is a time of i, and Γi is a set
of SNAP-CCs in the temporal vicinity of i (e.g. within a 5
second time difference). ∆Ti is 1/8 of the fundamental beat
interval. Here, the fundamental beat interval is the most
frequent SNAP-CC interval extracted using a histogram of
the SNAP-CC intervals.

(5) Calculate the total adjacent SNAP probability for
each SNAP-CC by calculating the sum of SNAP probabili-
ties of SNAP-CCs in the vicinity (e.g. within a 0.5-second
time difference) of the SNAP-CC.
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Figure 2: A music spectrogram and SNAPs

(6) Estimate the SNAP candidates, which are points on
the time axis, by thresholding with respect to the maxi-
mum SNAP probability supporting each of the total adja-
cent SNAP probability.

(7) Eliminate spurious SNAPs from the SNAP candi-
dates. Spurious SNAPs arise due to subtle onset asyn-
chrony between simultaneous multiple notes or multiple fre-
quency components. Elimination is done by thresholding
with respect to intervals between SNAP candidates. That
is, the following steps are repeated until all the SNAP can-
didates are processed: first we choose the SNAP candidate
with the highest total adjacent SNAP probability, and then
eliminate all the SNAP candidates existing in the tempo-
ral vicinity (e.g. 1/8 of the most frequent SNAP candidate
intervals).

An example of SNAPs and the corresponding spectro-
gram extracted from a polyphonic music excerpt are shown
in Fig. 2.

2.2. Mixing parameter estimation

The next step involves finding fundamental frequencies and
amplitudes of the notes contained in each snapshot. For
such purposes, various techniques, such as comb filtering,
harmonic clustering [6], and MAP estimation [11] have been
employed in the literature. Our approach here is based on
a probabilistic framework.

Firstly, we model the observed spectrum containing mul-
tiple simultaneous notes in a snapshot as a linear combina-
tion of note spectra xn(ω):

y(ω) =

N∑
n=1

inanxn(ω) + v(ω), (2)

where ω is frequency, y(ω) the observed sound spectrum,
an the amplitude for the n-th template, in the binary (0/1)
“indicator” term for the n-th template, and v(ω) is an ad-
ditive noise term. In this paper, we refer to in, an, xn(ω)
as mixing parameters. We assume that xn are stored in
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advance and N is the number of the stored notes. We also
assume y(ω) and xn(ω) are real power spectra rather than
complex ones.

Then, the problem we address here is to estimate mixing
parameters, given the observation of spectrum y(ω) and the
prior distributions of the parameters.

The posterior distribution for the mixing parameters
may be written as

P (�,�,�(ω)|y(ω))

∝ P (y(ω)|�,�,�(ω))P (�)P (�)P (�(ω)), (3)

where �, �, and � stand for the n dimensional vectors in, an,
and xn, respectively. Hereafter, we will omit ω for simplicity
of notations where explicit expression is unnecessary.

Priors can be given considering the sequence of snap-
shots. Here, we consider a basic case where each snapshot
is treated independently of each other. Then, for priors, we
assume:

P (y|�,�,�) = N(

N∑
n=1

inanxn, σ2
v) (4)

p(�) = independent Bernoulli priors, (5)

p(�) = N(�a,Σa), (6)

p(�) = N(�x,Σx), (7)

p(v) = N(µv, σ2
v), (8)

where N(�,Σ) denotes Gaussian distribution with mean
vector � and covariance matrix Σ.

Then, Eq. (3) leads to:

p(ik|i−k,�,�, y) ∝ b

b + c
, (9)

p(�|�,�, y) ∝ N(Φ−1
a Θa, Θ−1

a ), (10)

p(�|�, �, y) ∝ N(Φ−1
x Θx, Θ−1

x ), (11)

where i−k denotes � except for ik, and

b = P (�,�, y|i−k, ik = 1)P (i−k, ik = 1), (12)

c = P (�,�, y|i−k, ik = 0)P (i−k, ik = 0), (13)

Φa = Σ−1
a +

∑
ω
�(ω)�T (ω)

σ2
v

, (14)

Θa = Σ−1
a �a +

∑
ω

y(ω)

σ2
v

�(ω), (15)

Φx = Σ−1
x +

��T

σ2
v

, (16)

Θx = Σ−1
x �x +

y

σ2
v
�. (17)

Eqs. (9)–(11) enable us to estimate expectations for �,
�, � by Gibbs sampling. That is, those parameter values
are obtained by drawing samples one by one from the dis-
tributions in the right-hand side of Eqs. (9)– (11) and then
calculating the sample means [12].

The overall estimation procedure is as follows:

1 2 100. . .

#

Figure 3: Test pattern example

1. In each snapshot, observe y(ω).

2. Set initial values of parameters �, �, and �(ω).

3. Run the Gibbs sampling process described above.

4. Upon convergence, output the estimated parameter
values and return to 1.

3. EXPERIMENTS

The objective of the experiments was to evaluate the basic
characteristics of the proposed estimation method. Thus,
we used audio test signals composed for this purpose. The
test signal was a monaural multiple-simultaneous-notes pat-
tern, as shown in Fig. 3. To create the pattern, we first
recorded single notes of natural musical instruments (flute
and violin) performed by professional players at a recording
studio and stored the waveforms on a computer (16 bit, 48
kHz). We then randomly mixed the stored waveforms on
a computer, selecting a designated number of notes. This
means that each snapshot was independent of each other.
The number of simultaneous notes was either two or three,
while the number was not given to the parameter estima-
tion process. The pitch range was between C3 (523 Hz) and
C4 (1026 Hz).

The system was given �x and Σx, which represent the
statistical information of the templates. These parameters
were obtained from another set of recordings of the musi-
cal instrument sounds (flute, violin, and piano). For each
instrument, we recorded two samples for each of three dif-
ferent expressions (forte, normal, piano) for each semitone
over the predetermined pitch ranges. We then calculated
�x and Σx for each instrument and semitone. That is, each
of the templates (x1, x2, · · · , xN ) corresponds to a specific
semitone of a specific instrument in this experimentation.
Throughout the experiments, frequency analysis was done
using 48 band-pass filters equally spaced on a log-frequency
axis between 300 Hz and 4800 Hz.

The results are shown in Table 1. Case A is that when
only the flute and violin templates between C3 and C4 were
used (N = 26). Case B is that when the flute, violin and
piano templates between C3 and C4 were used (N = 39).
The recognition rate R was defined as

R = max
θ

(
p + r

2

)
(18)

where θ is a threshold value for the obtained expectation
values of �. The precision rate p and the recall rate r were
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Table 1: Random pattern results (R values)

Input Case A Case B

fl + vl
90 % 80 %

Simul. 2 notes

fl + vl
73 % 67 %

Simul. 3 notes

Case A: template={fl, vl}, N = 26
Case B: template={fl, vl, pf}, N = 39
fl: flute, vl: violin, pf: piano

defined as

p =
(#correctly recognised notes)

(#output notes in total)
, (19)

r =
(#correctly recognised notes)

(#notes which should be recognised)
, (20)

where “correct” means that both the fundamental frequency
in terms of semitones and the instrument name are correct.
The results listed in Table 1 show that the proposed estima-
tion method works reasonably well. Especially, encouraging
is that the accuracy was better than 80 % when the number
of simultaneous notes was two, considering that the num-
ber of simultaneous notes was not given to the system in
advance.

4. CONCLUSIONS

This paper has proposed a Bayesian method for mixing pa-
rameter estimation for musical sounds. The method firstly
decomposes an input audio signal into sections called snap-
shots based on the detected onset candidates of notes, and
then estimates parameters, such as fundamental frequencies
and amplitudes of the notes contained in each snapshot.
Unlike existing methods, our parameter estimation method
is based on the Bayesian framework in the frequency do-
main, and thus we expect that musical knowledge (statisti-
cal information such as tendencies in note or chord transi-
tions) can be straightforwardly incorporated as priors. The
experiments described in this paper have focused on the va-
lidity of the parameter estimation mechanism, and future
work will include evaluation using ordinary music perfor-
mances. We also plan to apply the method to music infor-
mation retrieval tasks.
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