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ABSTRACT

We consider an enhancement to the DUET sound source separa-
tion system [1], which allowed for the separation of N localized
sparse sources given stereo mixture signals. Specifically, we ex-
pand the system and the related delay and scale subtraction scor-
ing (DASSS) [2] to consider cases when two sources, rather than
one, are active at the same point in STFT time-frequency space.
We begin with a review of the DUET system and its sparsity and
independence assumptions. We then consider how the DUET sys-
tem and DASSS respond when faced with two active sources, and
use this information in a Bayesian context to score the probability
that two particular sources are active. We conclude with a musical
example illustrating the benefit of our approach.

1. INTRODUCTION

Sound source separation refers to the problem of synthesizing [V
source signals given an M channel mixture of those source signals.
When there are fewer input mixtures than sources to be separated
(M < N), we have the degenerate case. In the degenerate case,
it is necessary to use prior information about the source signals to
perform demixing, because of the ill-posed nature of the inverse
mathematical problem.

We presently consider the two mixture degenerate case. In dig-
ital audio, we frequently encounter this case, as many or most cur-
rently available commercial digital recordings contain two chan-

nels (stereo) but more than two instruments, voices, or other sounds.

A variety of approaches to this and other degenerate problems
have been tried [3]. Each method exploits one or more features
of the sound sources, as they must do in order to be successful.
Such features include the sources’ time-frequency sparsity, their
time-frequency independence, and their distinct amplitude and de-
lay characteristics between the mixtures. A brief review of these
techniques for the two source case is included in [1].

We find that the DUET system [4, 5, 1] has achieved partic-
ularly convincing results, but can still be improved. Specifically,
we note that the system only works as intended when in fact the
sources are distinct in time-frequency space. This is referred to
as “source sparsity” although non-overlap of sources is also re-
quired. This is because co-occurring sparse sources cannot be sep-
arated. In performance of tonal Western music, sources are in gen-
eral sparse because instrumental ranges are finite and most com-
positions do not require constant playing or singing throughout
time. The sources, however, are not in general independent, unless
the ensemble is without skill or the music requires that players
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sound notes in a deliberately random fashion. The harmonic na-
ture of Western music exacerbates the problem, because harmon-
ics whose fundamental frequencies are in (possibly imperfectly)
consonant relations will overlap. Even in the case of dissonant or
deliberately random music, pitches are in general discretized to the
12-tone Western scale, leading to overlap of some harmonics.

Given these facts, it is necessary that the DUET system be
modified if it is to deal with non-independent sources such as those
seen in music. Presently, we consider a method for the case when
exactly two unknown sources are present. This means that two
instruments or voices are sounding though we do not know a priori
if it is, for example, the bass and cello or cello and flute. Clearly,
this case is only an incremental improvement of the current one-
source-at-a-time system. However, in the cases of musical trios
or four speaker examples, the two-source assumption is of great
benefit.

To consider the benefit in the current approach, we first review
the DUET system and the related delay and scale subtraction scor-
ing (DASSS) [2], and explore how these models are affected when
two sources are present at the same point in time-frequency space.
In the third section, we consider how to exploit the two-source
system response in a Bayesian context. Specifically, we develop
a method for scoring the probability that two particular sources
are active given DASSS data. We conclude with a musical exam-
ple showing the efficacy of using Bayesian Modeling of DASSS
data rather than DUET for determining and demixing two active
sources.

2. DUET AND DASSS REVIEW

We first review the DUET system [4, 5, 1] of Scott Rickard and
other authors. The DUET system performs sound source separa-
tion of N sources from two channels, where IV is in general greater
than two. The DUET system assumes the following STFT domain
linear mixing model for sources .S; in left channel X; and right
channel X5:

X1 S1+S24+---+ 5§ (D
Xy = ae?¥0g +age_j“’6252-l----+aNe_jW5NSJ(r2)

where a; represents the scale parameter and J; represents the delay
parameter, each from the left to right channel, for some source <.
We refer to a; and §; together as the mixing parameters for a given
source %.

By assuming that only one source at a time is active in time-
frequency space — a near-realistic assumption for independent speech
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sources — we may estimate the mixing parameters for a particular
time-frequency point via:

R |X2(Wk,7)|% o X1 (w, 7) "
(””5’)‘<|X1(Wk,r>|’ {lg<xa<wk,r)>}/ ) ®

After collecting many such estimates, the DUET system pre-
pares a two-dimensional histogram whose peaks in (a;, d;) space
should reveal the mixing parameters for each of the IV sources.
To demix the sources, DUET considers the set of parameter es-
timates a second time after the source mixing parameters are es-
timated from the histogram. It then assigns each point in time-
frequency space to the source whose mixing parameters are closest
to that estimated for the time-frequency point. To do this, a vari-
ety of matching schemes may be used. We have presented delay
and scale subtraction scoring (DASSS) [2], which is similar to a
method presented recently by the original DUET authors in [1].

In DASSS, we define a set of functions Y; such that:

— Leriunix, “)

a;

Y, = Xu

and the mixing parameters are always treated as known quantities.
If in fact exactly one source, Sy, is active at a given frequency bin
in a given frame, it may be shown that our model predicts:

Vieg = 0 (5)
Vitg = @S} (6)
= ajXi. %
where
Qup = (1 — Leiw@u=tu)y (8)

Ay

We now observe that we may similarly predict the DASSS
function values Y; when two sources S, and S, are active:

YA'i:u = auwwdy (&)
Yieo = awSe (10)
YA;#(u|v) = iuSu + aivSy (11)

We now make an important observation. If we know how S, and
S, are distributed, we then know how )A/z:u, }A/i=,,, and )A/i#u‘v)
are distributed. (In general, we will see that distributions on |S,|
and |S,| may be practically estimated from knowledge about a
musical or speech source, such as its range and loudness. Distribu-
tions on /S, and Z.S, are not informative, and thus we will use the
set |Y;|, ¢ € {1...N} rather than the sets Y; or ZY; as our DASSS
data.) Below, we will exploit our knowledge of the DASSS data
in a Bayesian context to determine if (and which) two sources are
most likely active.

Much as we know how the DASSS data Y; functions will be-
have for the two source case, it may also be shown [6] that we
can predict the values for the DUET data given by equation 3 in
the same case. It is not practical, however, to exploit this data,
as logistics and computation quickly become prohibitive [6]. We
therefore focus our efforts on DASSS data below.

3. BAYESIAN FRAMEWORK

As suggested above, the DASSS data produced by equation 4 may
in fact reveal which two sources are active at a particular point in
time-frequency space if exactly two sources are active. This is very
useful information, because once the active sources are known,
they may be demixed by solving for S, and .S, in:

—1
Su 1 1 X
|: Sv :| = |: aue—jwéu ave—jwéu :| |: X; :|7(12)

which follows directly from equations 1 and 2 when only two
sources are active.

Formally, we express the two most likely sources given some
DUET or DASSS data D as those maximizing p(u, v|D). Apply-
ing Bayes’ rule, we can express this as

p(Dlu, v)p(u, v)
p(u,v|D) . (13)
We can see by inspection of equations 9 through 11 that the STFT
frequency under consideration, w, affects DASSS data D (the Y;
values). So, we are mindful that the problem is a different one for
each of the frequency values w under consideration.

Since p(D) is not a function of u or v, it is possible to discard
it from the maximization (though we may wish to use it later if
a confidence measure is sought). The quantity p(u,v) is largely
estimated with musical knowledge. For example we may know
that the clarinet (source v = 1 for example) tends to play at the
same time as and less loudly than the violin (say, source v = 2),
whose frequency components tend to be at harmonics of frequen-
cies above 200 Hz, and rarely throughout time. Though very use-
ful, such information is not within our current signal processing
interest, and is not considered now. (For now, we will treat all
p(u,v) as equally likely.)

We are left, then, to consider p(D|u, v) for each w, the prob-
ability that particular DASSS data is produced when sources v
and u (but no others) are active at frequency w. To this end,
we next explicitly return to the distributions suggested by equa-
tions 9 through 11. By doing so, we identify the necessary values
of p(D|u, v) where D represents DASS scores Y;.

4. BAYESIAN FRAMEWORK APPLICATION

As mentioned above, knowledge of the distributions on |S,| and

|Sv| can be used to create distributions on the |Y;| values from

equations 9 through 11. The distributions on |S;| need not be

Gaussian to use the technique described here. Assuming this sim-

plifies the situation, however, and informal experiments have shown
that we may fairly model the amplitude of the STFT coefficients

this way by considering their distribution as the positive values of
a zero-mean Gaussian. Specifically, it may be shown that doing so

leads to

Ve N(0,02 - |auo]?) (14)
[Yicol = N(0,02 - |owul?) (15)
Yieinl = NO,0% - |ail® + 05 - Jai|®)  (16)

where o? represents the variance for source 7 at a given frequency.
(We again recall that these distributions, and their related o and
« values are source dependent, and different for each frequency.
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Clearly, o2 will be larger for frequencies corresponding to the ac-
tive range of a given voice or instrument.)

‘We may calculate then, the probability that a set of data D (in
the form of |Y;| values given by equation 4) was generated by the
presence of sources Sy and S, via:

N
p(Dlu,v) = [[p(Yillu,v) an
i=1
where
1 —|i
p(Yillu,v) = : exp{ 1vi ]
2nvar (Yi|u, v) 2var(Yi|u, v)

and var(Y;|u, v) refers to the variance in the distributions of ex-
pressions 14 through 16.
To achieve our goal of determining the two most likely sources

ata given point in time-frequency space, we first determine p(D|u, v)

for the point’s |Y;| values using equation 17 and considering every
possible (u,v) combination. Then we substitute in our result to
equation 13 which allows us to take into account prior probabili-
ties. By allowing u or v to be “NULL” and assigning a value cor-
responding to the noise floor as the variance of Sxurr, we effec-
tively can include the one-source combinations used in the DUET
system as well.

5. A PATHOLOGICAL MUSICAL EXAMPLE

We have applied the current Bayesian Two Source Modeling (BTSM)

technique to a pathological musical example that is otherwise par-
ticularly difficult to deal with. We consider a musical trio in which
two sources are always active, and each plays the same note in the
same octave. The samples are of clarinet, violin, and cello, and
come from the Iowa samples database [7].

As can be seen from the spectrograms in figure 1, the clarinet
and violin first play together, then the clarinet and cello, and fi-
nally the violin and cello. The mixing was done synthetically as
specified by the DUET signal model, with mixing parameters:

[ source [ ai [ ds |
1 1.05 | -9.07e-5
2 1.01 | -2.27e-5
3 0.9 6.80e-5

To prepare the system, we first processed excerpts (segmenta-
tion courtesy of Pamornpol ‘Tak’ Jinachitra) from all of the files
for each instrument to gain estimations of the variance of each
source’s STFT magnitude coefficients. We then processed all points
in STFT space for the test file containing X; and X», calculating
p(u,v|D) using the Bayesian approach above, and including null
sources to allow a one source output. We used a uniform prior
p(u, v), indicating no preference for the activity of any one or two
of the three sources.

In the spectrograms in figure 2 and the output SNRs (dB) in the
table below, we see the results achieved by the DUET system and
the current BTSM system. Though the DUET system often does
separate some of the frequency components correctly, its single
active source constraint becomes a liability when most frequency
components of the sources overlap. Indeed, we can see cases in
the figure where components sharply enter or exit, a highly au-
dible phenomenon. The BTSM approach achieves much higher

Fig. 1. The original mixtures X; and X» and the source perfor-
mances S (clarinet), Sa (violin), and Ss (cello) used to make
them.

SNR, and allows sharing of frequency components between two
sources. We see that it sometimes chooses the two active sources
incorrectly, giving data to the violin, for example, when only the
clarinet and cello are active. More often than not, however the
system guesses correctly about which two sources are active, and
makes less audible errors. Time domain envelope plots (whose
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Fig. 2. The separated original mixtures achieved by the previous
DUET approach and the new BTSM approach.

inclusion is prevented by space issues) confirm the above.

[ source || Input SNR | DUET SNR | BTSM SNR |

1 -0.4 7.1 15.7
2 -13.2 -6.0 1.1
3 -0.5 6.3 18.3

6. SUMMARY AND FUTURE DIRECTIONS

We have presented a Bayesian framework in which it is possible
to estimate the probability that a particular 1 or 2 of N sources
are active at a single point in STFT time-frequency space, given a
stereo mixture signal and the mixing parameters for the sources.
This is significant because it allows us to demix up to two, rather
than just one, source for each time-frequency point. This is an
important advancement in signals where sources overlap, namely
musical signals. Further, the system allows us to bias the probabil-
ities in favor of which sources are more likely to be present at given
frequencies, which can be especially beneficial when voices or in-
struments have known frequency component ranges. Currently,
the system does not explicitly identify the probability that three or
more sources are active, however.

In the future, we will consider the prior probabilities of sources
in nontrivial detail, and seek to integrate data across frames and
frequency components. We will also consider an iterative approach
for source estimation in which we update priors for the active
sources at a given moment based on the data in local frames.
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