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ABSTRACT

In this paper we describe a musical stream note

segmentation method that employs time-domain and

frequency-domain analysis methods working in

conjunction. The method has two demonstrated benefits:

first, it leads to reliable results with very low probability

of either missing or of falsely detecting notes, and second,

it has temporal resolution on the order of 1 msec. We

have applied the method to a variety of monophonic

musical instrument recordings, including the clarinet,

piano and violin, with results that vary from 95% to 100%

accuracy.

1. INTRODUCTION

Segmentation of a musical audio stream into separate

musical events (notes) typically is the first step in music

recognition algorithms. Such algorithms have

applications in areas such as “smart” musical

accompaniment, automated music transcription and

automated musical style analysis. It is in the latter context

that the methods described in this paper have been

developed, specifically for a computer-based system to

provide real-time visual display of note timing for

teaching in a musical ensemble setting and in our efforts

to assess the influence of network latency on the

performance musicality of remotely located musicians

playing together over the Internet.

Music recognition systems characteristically combine

“low-level” DSP based techniques with “high-level”

decision making strategies, such as Bayesian methods, to

achieve a parsing of the musical stream. High-level

decision making strategies attempt to resolve any residual

ambiguities in the low-level results, which may be due to

either the limitations of the low-level methods or to

ambiguity intrinsic to the musical stream. Thus, the

effectiveness of an overall system is critically dependent

upon the quality of the results from the low-level analysis

and ideally, any remaining ambiguity in the low-level

results would be only that which is intrinsic to the musical

passage. The work described here presents a “low level”

musical stream segmentation method that combines time-

based and frequency-based analysis methods. This

approach has several favorable features; first it enables

precise note onset times to be determined (typically to 1

millisecond of resolution) and second, the combination of

the time and frequency methods allows the resolution of

note onset ambiguities that exist when a single analysis

method is employed.

Figure1. The normalized signal energy and the frequency

of the dominant spectral feature in the STFT are plotted

versus time. Diamonds denote note onsets. The energy

minimum at (A) may be mistaken for a note onset. This

candidate may be vetoed by the frequency data, which

indicates a continuous note. Time domain methods alone

may miss event B (an example of slurred notes) in which

there is a small change in energy but a significant

frequency change. Finally, due to the relatively poor time

resolution in the STFT, the transition between notes of the

same frequency may be overlooked (event C). This onset is

detected on the basis of a decrease in energy.

The greatest success at note segmentation has been

achieved for piano recordings [1,2] since the percussive

attack of the piano lends itself to energy-based techniques

in either the time or frequency domains [3,4,5,6,7]. Wind

instruments, such as the clarinet, or bowed stringed

instruments, such as the violin, present a much more

difficult challenge due to the less percussive nature of the

note onsets, greater variations of pitch and the presence of

vibrato and tremolo (defined in the present context as
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amplitude and frequency modulation respectively).

Therefore higher-level techniques that employ “learning”

algorithms or predictive methods have been employed

[8,9,10,11,12,13,14]. The best results for such systems

have been achieved by employing training sets that have

been segmented “by hand” [3].

Most of the DSP based musical stream segmentation

techniques are energy based, i.e., the energy of the signal,

computed as a moving average in the time domain, is

monitored for abrupt changes. Although this method may

have good time resolution, typically it fails to detect a

fraction of note onsets, such as slurred notes (notes of

different pitches tied together) and grace notes (very short

notes immediately preceding other notes) due to the small

or rapid energy changes in such events. Energy-based

techniques also may lead to false onset detections due to

musical features such as vibrato and tremolo, see Figure 1.

Thus the choice of the threshold in energy-based methods

is critical and a major shortcoming of such methods is the

strong dependence of the results on the choice of the

threshold value. Finally, energy-based methods employ a

moving average to smooth rapid fluctuations of the

energy, which may have the unintended effect of shifting

the inferred note onset times by an amount that is

dependent upon the length of the averaging window and

the detailed structure of the musical signal.

In musical events such as slurred and grace notes in

which the energy does not change significantly there may

be a significant frequency change, indicating the presence

of a separate note. Furthermore, when vibrato is present

the energy may fluctuate significantly without a change in

frequency. Therefore, an optimal note segmentation

method should combine evidence from both the time and

the frequency domains.

In the spectrum of a musical tone normally the energy

is distributed among a set of partials that are harmonically

related to a fundamental frequency that determines the

note’s pitch. Often the largest concentration of energy

may be in one of the harmonic overtones, even though the

assigned pitch is that of the fundamental, and the

distribution of energy among the harmonics may vary

over the duration of the note. Such changes, which are

described as changes in timbre, may be mistaken for

changes in the note frequency by simply tracking the

largest spectral component. Thus, we have included the

following check for “harmonicity” as follows. If the

frequency containing the greatest energy changes between

frames then the frequency of the new maximum is

compared to the frequency of the maximum in the

previous frame to check if they are related harmonically.

If so, then the difference may be ascribed to a change in

timbre.

Good frequency resolution is critical to enable

discrimination of tremolo and mistuned notes from the

onsets of new notes. However, high frequency resolution

comes at the price of reduced discrimination of energy

changes due to the averaging effect of the long time

frames required. Frequency interpolation may be

achieved by zero padding the signal, however this requires

greater processing time. To obtain pitch resolution better

than a semi-tone over the full range of pitches we

employed a frequency resolution of 2-4 Hz, which for our

choice of STFT overlap gave a temporal resolution of 10-

20 msec. If the note onset time were to serve simply as an

indicator that a new note has begun then this time

resolution would be sufficient. However, for the purposes

of musical style analysis and assessment of the effects of

latency on musical performance, greater time resolution

was required.

Our goal is to accurately measure note onset times,

which leads to the question - when, exactly, does the note

begin? Each separate note has attack, sustain and release

phases, the details of which depend on the musical

instrument and the performance technique. However, in a

musical stream each note may not be well defined. For

example in very short duration notes, such as grace notes,

the sustain portion may not be evident, with the rise time

comprising the largest fraction of the note, see Figure 4.

Furthermore, the energy may not drop to zero between

notes or the duration of the attack may vary. Finally, the

perceived point of attack depends upon the time resolution

of the human auditory system. The question then

becomes, to which point in the attack phase of the note

should we assign the note onset? For simplicity we assign

the note onset time to the minimum of the time domain

energy at the beginning of a detected attack.

2. THE SEGMENTATION METHOD

Note onsets are detected by a change in the energy, the

frequency or both. The main features of the method are

described in Figure 2.
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Figure 2. Block diagram of the onset detection method.

First, the STFT of the signal is computed employing

an overlap to increase the time resolution. For each time

frame of the STFT the harmonics containing the signal

power are identified and the harmonicity (as defined

above) is checked to look for continuity between
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successive time frames. Discontinuity indicates a

candidate note onset. At the same time the energy in each

frame is found by summing the Power Spectral Density

(PSD) computed by the STFT. A fixed energy threshold

is applied to eliminate the very low energy portions of the

signal corresponding to intervals of relative “silence”

between notes. Then a “dynamic” energy threshold is

applied, which searches for either rapid increase of the

energy or a large gradual change in energy occurring over

a longer time scale, such as would occur for notes with

“soft” attacks. If a change of harmonicity is detected or if

the dynamic energy threshold is reached, the event is

marked as a candidate note onset.

The onset of a note is always preceded by an energy

minimum. Furthermore, the energy computed in the time

and frequency domains is the same (Parseval’s Theorem).

Thus, the final step in the procedure is to search for the

absolute energy minimum (employing the time domain

energy calculation) in the vicinity of each candidate onset

time from the STFT based analysis. The energy minimum

determined in this way indicates the note onset time with a

resolution corresponding to the inverse of the sampling

rate (about 0.2 msec in our case) - see Figure 3.

Figure 3. Timings for a note onset in both domains: there

is a significant offset due to different resolutions.

Detection of note onsets by monitoring frequency

changes alone may lead to false onset detection at the

release of a note. Occasionally in the release phase,

especially for wind instruments, there may be a slight

change in frequency. When the STFT has poor frequency

resolution (short time window), this may be interpreted as

a new note. However, if the energy is monotonically

decreasing such candidate events are discarded.

Rapid, steep amplitude changes, with continuous

harmonicity are characteristic of bowed string instrument

vibrato, which may lead to false candidate onsets. A

temporal threshold applied only to this condition, vetoes

such events. Although vibrato may have amplitude and

frequency modulation components, narrow band AM and

FM would appear similarly in a magnitude spectral plot,

and thus our methods would not distinguish between

them.

3. RESULTS

The method was applied to monophonic clarinet, piano

and violin recordings of the same Mozart piece performed

with various tempos and styles. The STFT was computed,

using 85% overlap, for a FT length of 1024 (2048)

samples and sampling rate of 4,410 samples/sec. This

gave a time domain resolution of 0.2 msec and a

frequency resolution of 4.3 (2.1) Hz, and a STFT time

resolution of 17.5 (34.7) ms. The frequency resolution of

2-4Hz was sufficient to determine the pitch of the lowest

pitched notes in the recordings to slightly better than a

semi-tone.

In the clarinet and piano recordings the note onsets

were detected with 100% accuracy, with no missed notes

nor any false onset detections (197 and 153 note events

were detected respectively). The accuracy of the violin

recording was 95.5%. Out of 200 note events, 203 note

candidates were detected, which 191 were correct note

onsets with 11 false detections and 2 missed. In Figure 4

we show the results for the clarinet. Notice the correct

detection of the grace note marked in the figure.

Figure 4. Segmentation results for the clarinet recording.

Notice the detected grace note. On the same figure are

examples of well separated notes (attack, sustain and

release phases), and notes without a sustain phase.

4. CONCLUSIONS

The challenge of assessing transmission latency effects in

distributed musical performance led us to develop a

computer tool for time-precise note segmentation. Normal

time-frequency representations, such as the STFT, have

limitations for this application, as there is always the time-
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frequency resolution trade off. Therefore we developed a

technique in which we rely on both time and frequency

domain analyses and combine the benefits of both

domains. The STFT is used to coarsely locate the time of

the note onsets and the frequency domain information

from the STFT is employed in the onset identification

task. Candidate note onsets are then examined in the

time-domain to “zoom in” on the onset events. This

allows note onsets to be measured to the resolution of the

inverse sampling frequency. This technique for high time

resolution audio segmentation may be applied to music,

speech or other similar signals.

An effective music recognition system must combine

multiple levels of analysis. In this paper we described a

low-level, DSP-based, method that combines separate

frequency and time domain analyses to unambiguously

detect note onsets and to determine note onset times to

milliseconds of accuracy. Although remaining

ambiguities may be resolved at higher levels of analysis

that employ expert knowledge or learning algorithms, this

job is made easier by performing the most complete and

reliable analysis possible at the low level.
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