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ABSTRACT

In formating temporal sequences of notes played by the same in-
strument (referred to as music streams), timbre of musical instru-
ments may be a predominant feature. In polyphonic music, the
performance of timber extraction based on power-related features
deteriorates, because such features are blurred when two or more
frequency components are superimposed in the same frequency.
To cope with this problem, we integrated timbre similarity and
direction proximity with success, but left using other features as
future work. In this paper, we investigate four features, timbre
similarity, direction proximity, pitch transition and pitch relation
consistency to clarify the precedence among them in music stream
formation. Experimental results with quartet music show that di-
rection proximity is the most dominant feature, and pitch transition
is the secondary. In addition, the performance of music stream
formation was improved from 63.3% by only timbre similarity to
84.9% by integrating four features.

1. INTRODUCTION

Automatic music transcription is important for many applications
including music archival and music retrieval as well as for sup-
ports of composers and arrangers. It consists of two processes:
note composition and music stream formation. The latter extracts
a temporal sequence of notes played by the same instrument. This
paper focuses on music stream formation and discusses dominant
features for this formation.

In previous studies [1][2] timbre of musical instruments,
which is extracted by the power envelope of the frequency com-
ponent, relative power of the fundamental component, and so on,
has been used for music stream formation. However when two
or more frequency components are superimposed in the same fre-
quency, these features are blurred. This makes it difficult to extract
precise timbre. To solve this problem, some studies [3][4] have im-
proved methods of extracting timbre, and other studies [5][6] have
integrated other features with timbre. Eggink et al. [3] have used
missing feature theory and Kinoshita et al. [4] have proposed a
feature adaptation technique. Kashino et al. [5] have integrated
music interval transitions with timbre similarity, and Sakuraba et
al. [6] have integrated timbre similarity and direction proximity.
However, the research investigating other features has not been
done yet.

This research was partially supported by the Ministry of Education,
Culture, Sports, Science and Technology (MEXT), Grant-in-Aid for Scien-
tific Research (A), No.15200015, the Sound Technology Promotion Foun-
dation, and Informatics Research Center for Development of Knowledge
Society Infrastructure (COE program of MEXT, Japan).

In this paper, to clarify the precedence among features and to
improve the performance of music stream formation, four features,
timbre similarity, direction proximity, pitch transition and pitch
relation consistency are exploited. We evaluate which combination
of four features is most useful for music stream formation.

The rest of this paper is organized as follows: Section 2
presents the four features in detail. Section 3 overviews the pro-
cessing architecture. Section 4 reports experiments on music
stream formation. Finally, Section 5 concludes this paper.

2. FEATURES FOR FORMING MUSIC STREAM

Music stream formation aims to generate a temporal sequence of
notes played by each instrument. The main process of this for-
mation is to determine whether a music stream s and a note n
are played by the same instrument or not. To do this determina-
tion, we use four features, timbre similarity TS(s, n), direction
proximity DP (s, n), pitch transition PT (s, n) and pitch relation
consistency PRC(s, n). Timbre similarity is the most commonly
used feature. We use a 23-dimensional feature vector used in our
previous paper [6] for representing timbre. Direction proximity is
a feature used in our previous paper [6]. It will be useful because
each instrument is usually played at the same position from the
beginning to the end of a musical piece. Pitch transition is a new
feature we proposed. In tonal music, pitch transitions do not ap-
pear equally. Thus, if the transition is often seen in tonal music,
we can determine the stream and the note are played by the same
instrument. Pitch relation consistency is also a new feature. In
general, the pitch relation (which music stream has a higher pitch)
is maintained. This is suggested by the fact that in usual string
quartets (1st violin, 2nd violin, viola and cello), most top and bot-
tom notes are played by 1st violin and cello, respectively. If the
pitch relation are maintained when the stream tracks the note, we
can determine they are played by the same instrument.

The confidence measure of the music stream formation be-
tween s and n is defined as

L(s, n) = TS(s, n) × DP (s, n) × PT (s, n) × PRC(s, n).

2.1. Timbre Similarity

Timbre similarity TS(s, n) is defined by the mean of the timbre
similarity between n and each note that belongs to s, that is,

TS(s, n) =
1

|s|
∑
ni∈s

ts(ni, n),

where |s| represents the number of the notes of the stream s. The
timbre similarity ts(nj, nk) between two notes nj and nk is de-
fined by the probability that the two notes are played by the same
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instrument. Specifically, the difference xjk of the feature vectors
of the two notes is first calcluated, and then the probability defined
by

ts(nj, nk) = p(Π0 |xjk) =
p(xjk|Π0 )

p(xjk|Π0 ) + p(xjk|Π1 )
,

are calculated. Π0 and Π1 are hypotheses that the two notes are
played by the same instrument and by different instruments, re-
spectively. Here, the prior probabilities of the two hypotheses are
given the same value. The probability density function p(x|Πi) of
this distribution is defined by

p(x|Πi) =
1√

(2π)d|Σ|
exp{−D2

i (x;µi)

2
}

where d is the number of dimensions of the feature space, µi is the
mean of the distribution for each hypothesis Πi , Σ is the covari-
ance and D2

i is the squared Mahalanobis distance. D2
i is defined

as follows:

D2
i (x;µi) = (x − µi)

T Σ−1(x − µi),

where T is the transposition operator. We use the 23-dimensional
feature vector used in our previous paper[6]. As training data for
timbre similarity, a musical instrument sound database NTTMSA-
P1, which consists of 1353 solo tones of five instruments, is used.

2.2. Direction Proximity

The direction of notes is calculated by using the two microphones
in the following two steps:

1. Harmonic Structure Extraction
In every frame of the spectrogram, spectral peaks are extracted
from the power spectrum. Then, the peaks which correspond to
the harmonic structure are selected.

2. Localization
The interaural phase difference (IPD) of every selected peak is cal-
culated as

IPD = tan−1

(
�[Sp(l)]

�[Sp(l)]

)
− tan−1

(
�[Sp(r)]

�[Sp(r)]

)

where Sp(l) and Sp(r) are the spectra of the left and right chan-
nels, and �[X] and �[X] are the real and imaginary parts of X,
respectively. The direction θ of the peak is calculated by

θ = sin−1

(
c

2πfl
(IPD ± 2nπ)

)
(n = 1, 2, · · ·)

where f , l, and c are the peak frequency, the distance between
microphones, and the sonic speed, respectively. The direction of
the note D(n) is defined as the class mark of the highest frequency
in the direction histogram of all peaks.

Direction proximity between a music stream s and a note n is
defined as

DP (s, n) = 1 − |D(s) − D(n)|
2 Td (D(s))

,

where Td(x) is the threshold of the direction. Td(x) is designed in
consideration of human hearing, and is defined as

Td(x) = Tc + (To − Tc) · |x|
90

,

where Tc and To are the thresholds to determine the proximity of
two directions in the center (0 deg) and at either periphery (± 90
deg), respectively.
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Fig. 1. Overview of our automatic music transcription system.

2.3. Pitch Transition

To obtain the pitch transition, we analyzed 50 scores in a large
classical music database RWC-MDB-C-2001 [7] and generated
the trigram model of the pitch by using CMU-Cambridge Toolkit.
The number of notes was 167,179.

Pitch transition between a music stream s and a note n is de-
fined as

PT (s,n) = p(n|n|s|−1, n|s|),
where ni(1 ≤ i ≤ |s|) is the ith note that belongs to s. Since the
frequency of each pitch transition depends on the tonality of the
musical piece, the transition was normalized in the tonality.

2.4. Pitch Relation Consistency

Pitch relation consistency PRC(s, n) is defined by the mean of
the pitch relation consistency between s and each stream si (1 ≤
i ≤ N) that plays simulaneously with s, that is,

PRC(s, n) =
1

N

N∑
i

prc(s, si).

The pitch relation consistency prc(s, si) between two streams s
and si is defined by the history of the pitch relation, that is,

prc(s, si) =
1

2
+ (qi − 1

2
)M(ti),

where qi is the ratio of the time that si has higher pitch than s, to
the total time they play, ti is the time that si and s play (at the same
time). M(t) is the function whose values increase as two streams
play at the same time and is defined as

M(t) = 1 − exp(−c · t),
where c is the constant. Here, we set c = 3.0.

3. IMPLEMENTATION OF AUTOMATIC MUSIC
TRANSCRIPTION SYSTEM

Fig. 1 is the flowchart of the automatic music transcription system.
First, the frequency analysis analyzes, musical acoustic signals,
and then spectral peaks are extracted from the power spectrum.
Second, in the pitch probability density function formation
stage, a probability density function (PDF) of pitch, which rep-
resents the relative dominance of every possible harmonic struc-
ture, is formed. Third, in the note composition stage, multiple
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agents track the temporal trajectories of salient peaks in the PDF
and notes are generated. Finally in the music stream formation
stage, streams of notes are generated.

3.1. Frequency Analysis

First, stereo musical acoustic signals (sample rate: 48kHz) are
analyzed by short time Fourier transform, with Hamming win-
dows (4,096 points) for every 21ms, and then spectral peaks are
extracted from the power spectrum. The PDF p(t)(x) of the fre-
quency components is defined as follows:

p(t)(x) =
ψ(t)(x)∫ ∞

−∞ ψ(t)(x)dx

where ψ(t)(x) is the power spectrum at frequency x (in Hz).

3.2. Pitch Probability Density Function Formation

In order to represent how predominant each harmonic structure is
in the power spectrum, the PDF of the pitch is calculated according
to [8]. We assume that the observed PDF p(t)(x) consists of a
weighted mixture of harmonic-structure tone models. The tone
model indicates where the harmonics of the pitch (e.g. C4, G5)
tend to occur. When the PDF of each tone model whose pitch is F
is denoted as p(x|F ), the mixture density p(x; θ(t)) is defined as

p(x; θ(t)) =

∫ FH

FL

w(t)(F )p(x|F )dF,

θ(t) = {w(t)(F )|FL ≤ F ≤ FH},
where FL and FH denote the lower and upper limits of the possible
pitch range and w(t)(F ) is the weight of a tone model p(x|F ) that
satisfies ∫ FH

FL

w(t)(F )dF = 1.

If we can estimate the model parameter θ(t) such that p(t)(x) is
likely to have been generated from p(x; θ(t)), p(t)(x) can be con-
sidered to be decomposed into harmonic-structure tone models and
w(t)(F ) can be interpreted as the PDF of pitch:

p
(t)
pitch(F ) = w(t)(F ) (FL ≤ F ≤ FH)

Therefore the problem to be solved is to estimate the model
parameter θ(t) when we observe p(t)(x). The maximum likeli-
hood estimator of θ(t) is obtained by maximizing the mean log-
likelihood defined as∫ ∞

−∞
p(t)(x) log p(x; θ(t))dx.

For this maximization, the Expectation-Maximization (EM)
algorithm is used. By introducing a hidden variable F describing
which tone model was responsible for generating each observed
frequency component at x, we can specify the two steps as fol-
lows:

1. E-step: Compute the following conditional expectation of the
mean log-likelihood:

Q(θ(t)|θ′(t)) =

∫ ∞

−∞
p(t)(x)EF [log p(x,F ; θ(t))|x; θ

′(t)]dx.

where EF [a|b] denotes the conditional expectation of a with
respect to the hidden variable F with the probability distribu-
tion determined by the condition b.

2. M-step: Maximize Q(θ(t)|θ′(t)) as a function of θ(t) to obtain
θ(t):

θ(t) = arg maxθ(t)Q(θ(t)|θ′(t)).

Here, we need to assume p(x|F ) indicates where the harmon-
ics of the pitch F tend to occur. We use the same model as the
literature [8].

3.3. Note Composition

To select the pitch trajectory that is dominant and stable from
the viewpoint of global pitch estimation, the method sequentially
tracks peak trajectories in the temporal transition of the PDF of
pitch, and outputs the notes that are the dominant and stable tra-
jectories. A multiple-agent architecture[8] is used to track the pitch
trajectories. It consists of a salience detector and multiple agents.
The salience detector picks up salient peaks in the PDF of pitch,
and agents track their trajectories according to the peaks. Each
agent has its pitch, a confidence measure of the trajectory CMNote

and a penalty. These values are updated as follows.

1. The salience detector picks up salient peaks of p
(t)
pitch(F ) that

are higher than the dynamic threshold adjusted according to
the maximum peak.

2. The salient peaks are allocated to the agent that has the same
pitch. If the salient peaks have not been allocated, a new agent
for tracking it is generated.

3. Each agent has a penalty, and an agent whose penalty exceeds
the threshold is terminated. An agent to which a salient peak
has not been allocated or which cannot find its next peak in the
PDF of pitch is penalized. The penalty of the agent to which a
peak is allocated is reset to 0.

4. Each agent evaluates its own confidence measure, that is, the
mean of the allocated peak.

5. The agents whose confidence measure exceeds a threshold
TCM are outputted as notes.

3.4. Music Stream Formation

In this stage, streams of notes are generated. To implement, we
adopt a multiple-agent architecture that enables the tracking pro-
cess to be controlled dynamically and flexibly. It consists of the
salience detector and multiple agents that are dynamically gener-
ated and terminated. The salience detector picks up salient notes
in the note hypotheses (that are generated in the previous stage),
and agents track their trajectories by integrating the four features,
that is, timbre similarity, direction proximity, pitch transition and
pitch relation consistency.

Each agent has its confidence measure of the trajectory
CMStream and a penalty. They behave at each block (the time
corresponds to the 32nd notes) as follows.

1. The salience detector picks up the notes that are higher than
the threshold TCM .

2. The agent interact to allocate the notes among themselves ac-
cording to the confidence measure of the music stream forma-
tion L(s, n). If more than one agent claims the same note, the
note is allocated to the agent that has highest CMStream. If
the note has not been allocated, a new agent for tracking it is
generated.

IV - 275

➡ ➡



Table 1. Music used to evaluate the system

Title Instruments Playing time #Notes

Pachelbel’s Canon Vn, Fl, Tp, Pf 6 min 30 s 5,868
Auld Lang Syne Vn, Fl, Pf 1 min 726

Vn: Violin, Fl: Flute, Tp: Trumpet, Pf: Piano

3. Each agent has a penalty, and an agent whose penalty exceeds
a threshold is terminated. An agent to which a note has not
been allocated or which cannot find its next note is penalized.
The penalty of the agent to which a note is allocated is reset.

4. Each agent evaluates its own confidence measure CMStream

that is the mean of CMNote of the allocated notes.

5. The agents are outputted as music streams.

4. EXPERIMENTAL RESULTS

To evaluate the improvement of the music stream formation per-
formance, stereo musical acoustic signals are used. The bench-
mark was the quartet music in Pachelbel’s Canon (Canon) and trio
music in Auld Lang Syne (ALS), listed in Table 1. The music was
played via four (or three) loud speakers using a MIDI sampler with
real instruments sound database and recorded by two microphones
(baseline: 20cm) in an anechoic room. The layout of the instru-
ments was violin, flute, trumpet and piano from left to right in
Canon, and flute, violin, piano in ALS. The current implementa-
tion uses the following parameter values: FL = D2, FH = F#6, Tc

= 10 deg., To = 20 deg. and TCM = 0.06.
The performance of the note composition was evaluated by

recall rate (R) and precision rate (P ).

R =
#correctly generated notes

#actual notes
P =

#correctly generated notes
#generated notes

This is because there are two types of errors. The first type is
caused by generating a note that does not exist in the score, and
the second type is caused by qnot generating a note that actually
exists in the score. The note was determined correct when it had
the same pitch as the score and its onset time error was less than a
32nd note. R and P were 66.4% and 76.0%, respectively.

To evaluate music stream formation, the notes that belong to
the same music stream in the score are determined correct. The
performance of the music stream formation is evaluated by

R =
#correctly formed notes

#actual notes outputted in note composition
.

The accuracies are listed in Table 2. Direction proximity was
the most effective feature for music stream formation, and pitch
transition is the secondary. The highest performance was the case
of using timbre similarity, direction proximity and pitch transition.
Timbre similarity was not effective in the case of ALS. This is be-
cause the features which represent the precise timbre are not clari-
fied in the case of polyphonic music.

5. CONCLUSIONS

In this paper, to improve the performance of music stream forma-
tion, we integrated four features, that is, timbre similarity, direction

Table 2. The results of music stream formation
feature1 feature2 feature3 feature4 Canon ALS

© — — — 63.3% 79.9%
— © — — 77.4% 84.9%
— — © — 66.5% 75.2%
— — — © 57.0% 63.8%

© © — — 77.2% 84.2%
© — © — 66.5% 79.5%
© — — © 62.4% 80.2%
— © © — 84.4% 91.6%
— © — © 77.5% 84.6%
— — © © 66.6% 76.5%

© © © — 85.0% 90.3%
© © — © 77.4% 84.9%
© — © © 66.5% 79.2%
— © © © 84.6% 91.6%

© © © © 84.9% 90.3%
feature1: timbre similarity feature2: direction proximity
feature3: pitch transition feature4: pitch relation consistency

proximity, pitch transition and pitch relation consistency. Exper-
imental results with quartet music showed that direction proxim-
ity is the most dominant feature, and pitch transition is the second
dominant feature. The performance of music stream formation im-
proved from 63.3% to 84.9%. Future work includes correction of
note composition error through the use of the music stream.
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