
RECENT IMPROVEMENTS OF AN AUDITORY MODEL BASED FRONT-END FOR THE
TRANSCRIPTION OF VOCAL QUERIES

T.De Mulder1, J.P.Martens 1, M.Lesaffre2, M.Leman3, B.De Baets3 and H.De Meyer4

1 Department of Electronics and Information Systems (ELIS), Ghent University;
Sint-Pietersnieuwstraat 41, 9000 Gent (Belgium). {tdmulder,martens}@elis.ugent.ac.be

2 Institute for Psychoacoustics and Electronic Music (IPEM), Ghent University
3 Department of Applied Mathematics, Biometrics and Process Control, Ghent University

4 Department of Applied Mathematics and Computer Science, Ghent University

ABSTRACT

In this paper recent improvements of an existing acoustic front-
end for the transcription of vocal (hummed, sung) musical queries
is presented. Thanks to the addition of a new second pitch extrac-
tor and the introduction of a novel multi-stage segmentation algo-
rithm, the application domain of the front-end could be extended to
whistled queries, and on top of that, the performance on the other
two query types could be improved. Experiments have shown that
the new system can transcribe vocal queries with an accuracy rang-
ing from 76 % (whistling) to 85 % (humming), and that it clearly
outperforms other state-of-the art systems on all three query types.

1. INTRODUCTION

In the future, music consumers will have access to larger and larger
music collections. Consequently, they will need efficient tools for
the retrieval of specific musical material. Many people are already
using electronic search and retrieval tools, tools that support tex-
tual specifications of title, performer, composer, date, label, etc.
Research in music content analysis aims at the development of
complementary and possibly more natural query methods. One
such a method is Query-by-Melody (QBM) (see [1]) in which the
user hums, sings, whistles or plays (on an instrument) a passage of
the melody he wants to retrieve.

All existing QBM systems (e.g. [2, 3, 4]) seem to consist of
two parts: (i) an acoustic front-end to transcribe the acoustic input
into a sequence of note segments with their associated note fre-
quencies, and (ii) a pattern matching back-end to search for the
musical piece that best matches the provided transcription. In this
paper, the focus is on the acoustic front-end and its transcription
performance. The impact of this performance on the music re-
trieval quality of a QBM system is currently being investigated.

In [5] we already proposed a first auditory model based acous-
tic front-end that could transcribe singing sequences. In this pa-
per we present important improvements of that front-end. We first
present the novel algorithms that were developed (section 2), then
we briefly describe the benchmarking tests we conducted (section
3), and we end (section 4) with a review of the experimental results
we obtained with three acoustic front-ends.

This research was funded by the Flemish Institute for the Promotion
of Scientifi c and Technical Research in Industry (project ”Musical Au-
dio Mining”, 010035-GBOU). The authors acknowledge P.Y. Rolland, G.
Raskinis and T. Heinz for granting permission to publish our results ob-
tained with the Solo Explorer and Ear Analyzer.

2. THE NEW ACOUSTIC FRONT-END

The acoustic front-end proposed in [5] incorporates an auditory
model (see [6]) and a note segmentation module. The auditory
model consists of a cochlear processor and some additional mod-
ules for modeling primary aspects of central auditory processing
(e.g. pitch and auditory spectrum extraction). The cochlear pro-
cessor comprises a number of parallel channels each consisting
of (1) a critical band wide band-pass filter tuned to a particular
channel frequency, (2) a forward-driven automatic gain controller,
and (3) a temporal envelope extractor. The channel outputs rep-
resent auditory nerve patterns that are partially synchronized with
the input signal (up to 300 to 500 Hz). Consecutive channels have
frequencies that are equidistantly spaced on a subjective frequency
scale. The unit of that scale is the bark [7], and the frequency of
channel m is equal to ucm on this scale.

The pitch extractor (AMPEX) of the original model performs
a temporal analysis of the high-pass filtered auditory nerve pat-
terns but is incapable of detecting the pitch of e.g. a whistled
sound. Therefore, another pitch extractor (SHS) is added to the
model (Figure 1). It performs an analysis of the auditory spectrum
Y derived from the low-pass filtered auditory nerve patterns. This
analysis is inspired by the Sub-Harmonic Summation Theory of
Terhardt et al [8]. The new auditory model thus generates an audi-
tory spectrum and two pitch + voicing combinations per frame.

2.1. The new SHS pitch extractor

If the pitch of a periodic signal is sufficiently low, the critical band
filters of most auditory channels capture several harmonics that in-
teract and evoke periodic envelope patterns. However, if the pitch
of the input signal becomes higher, most channels capture only one
harmonic and exhibit no periodic envelope patterns anymore. On
the other hand, consecutive harmonics appearing in different chan-
nels give rise to distinct maxima in the auditory spectrum, and the
pitch can emerge from the positions of these maxima. This calls
for a pitch extractor working in the frequency domain (analysis
of the auditory spectrum). Our SHS algorithm therefor starts by
searching for maxima in the auditory spectrum Y(n) of frame n.
Then it subjects a maximum at position m∗ to the following anal-
ysis:

Maximum position refinement. Define the region (m∗-2 .. m∗+1)
or (m∗-1 .. m∗+2) (depending on whether Ym∗−1(n) is either
larger or smaller than Ym∗+1(n)), and check whether all Ym(n)
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Fig. 1. Architecture of the newly presented auditory model.

in that region are smaller than Ym∗(n). If so, a parabola is fit to
Ym(n) in the defined region and the position (u∗) and value (A∗)
of its maximum are determined.

Maximum acceptance test. Compare Ym(n) with the auditory
spectrum T (u;u∗, A∗) that would emerge from a pure tone of fre-
quency u∗ and amplitude A∗, and which is approximated by

T (u;u∗, A∗) = A∗
[
(1 − u + u∗)eu−u∗]0.60

u < u∗

= A∗
[
(1 + u − u∗)eu∗−u

]0.35

u ≥ u∗

If Ym(n) ≤ 1.05 T (ucm; u∗, A∗) in an area of more than 2 bark
wide around u∗, then a pure tone component of amplitude A∗ and
frequency F ∗ (in Hz) (corresponding to u∗ in bark) is identified.

Pitch candidate detection. For each frame n one has obtained a
tone set {Fk(n), Ak(n); k = 1, .., Kn}. If it is not empty, the
five sub-harmonics Fk(n)/i (i = 1..5) of each tone Fk(n) are
considered as potential pitch candidates, provided they fall in the
range from 350 to 4000 Hz.

Pitch evidence computation. For each identified candidate Fo(n),
make a weighted sum of the amplitudes of the pure tones Fk(n+j)
in three frames (j = −1..1) that coincide with one of the harmon-
ics of Fo(n): F1 and F2 are said to coincide if |F1−F2|/|F1+F2|
is smaller than some εF . Introducing coinc(F, Fo) = 1 in case of
coincidence and 0 otherwise, we obtain

Eγ(Fo(n)) =
∑
j,k

γiAk(n + j) coinc(Fk(n + j), Fo(n))

The weighting with γi (0 < γ < 1) must prevent that sub-harmonics
of the true Fo are selected as the pitch.

Pitch refinement. Once the pitch candidate Fo(n) with the high-
est evidence is determined, its frequency is further refined to

F ∗
o (n) =

∑
j,k

Fk(n+j)
ikj

Ak(n + j) coinc(Fk(n + j), Fo(n))

E1(Fo(n))

with ikj being the harmonic ratio for which coincidence was es-
tablished. I.e., if Fk(n + j) coincides with ikjFo(n), it attributes
evidence for a pitch Fk(n + j)/ikj . Here, there is no need for γ-
weighting anymore as there is no competition between Fo(n) and
any of its sub-harmonics.

Evidence refinement. Once the refined pitch F ∗
o (n) is computed,

its final evidence is computed as E1(F
∗
o (n)).

The free parameters of the SHS algorithm are γ and εF . They
will be optimized experimentally. As SHS is only intended for
pitches > 400 Hz, it can achieve a sufficiently high resolution with
a distance of 0.5 bark between channel frequencies.

2.2. The new note segmentation module

In [5] the segmentation of a query into note segments and rests
was mainly based on an analysis of the total energy pattern E(n)
(= sum over channels of Ym(n)). Now we propose a multi-stage
algorithm that can cope better with legato, vibrato and tremelo.
The different stages can be described as follows:

Stage 1: pre-segmentation. In this stage, candidate note bound-
aries are generated at clear minima in E(n) and at places where
E(n) drops below a rest threshold for several consecutive frames
(see [5]). Each segment between consecutive boundaries is labeled
as rest (R) or note (N).

Stage 2: segment labeling. Every note is relabeled as rest (R),
low-frequency note (LF) or high-frequency note (HF). To that end,
two segment features are computed:

v1 =
max Ve1

V1,min
, v2 =

max Ve2

V2,min

with max Ve1 and max Ve2 being the maximum AMPEX and SHS
evidences found in the segment. If v1 ≥ 1 then the segemt is
marked as an LF note, else, if v2 ≥ 1 it is marked as an HF note,
else is marked as R (rest). For each LF and HF segment we then
determine a segmental pitch (see [5]) using either the frame pitches
of AMPEX (for LF) or SHS (for HF).

Stage 3: boundary elimination. If tbound is the boundary posi-
tion, and Eleft and Eright the energy maxima in the preceding
and succeeding segment, the depth of the energy dip is defined as

depth =
E(tbound)

min[Eleft, Eright]

and a dip is considered weak if its depth exceeds some threshold
εdepth. A weak boundary is eliminated on the basis of its depth and
the difference ∆Fo (in semitones) between the segmental pitches
in the two surrounding segments:

eliminate boundary if ∆Fo < a depth + d

Experiments revealed that it is better to adopt different combina-
tions, (aLF , dLF ) and (aHF , dHF ), for LF and HF segment initial
boundaries respectively.
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Stage 4: legato processing. Not all boundaries between notes are
marked by an energy dip. In order to retrieve these boundaries too,
each generated long note segment (> 300 ms) is subjected to the
following analysis:

• Pitch stability analysis. Determine for each frame the max-
imum interval to the right in which the minimum and max-
imum pitch still coincide (as defined before). The result of
this analysis is a stable interval length pattern.

• Stable interval detection. From left to right, search for
a maximum in the stable interval length pattern, and if it
exceeds 150 ms, mark the interval starting at that maximum
as a stable pitch interval and move to the position right after
that interval. Repeat this procedure on the remainder of the
segment until the end of the segment is reached.

• Legato decision. If there are multiple stable intervals, then
consider the centers of the gaps between these intervals as
boundaries and compute the segmental pitches of the newly
created note segments.

The free parameters of the algorithm are V1,min, V2,min, εdepth,
(aLF , dLF ) and (aHF , dHF ).

3. FRONT-END EVALUATION

In order to evaluate the quality of an acoustic front-end one needs
(i) a representative set of vocal queries and their correct transcrip-
tions, and (ii) a good method for measuring discrepancies between
the automatically generated and the correct transcriptions1.

3.1. A manually labeled query database

For the evaluations presented in the next section, we have used 52
queries from 43 subjects. All queries were manually segmented in
notes and rests, and a frequency (in Hz) was assigned to each note
(see [9] for more details). The queries were collected in two cam-
paigns: 18 queries (the ones also used in [5]) of 9 subjects were
recorded in a quiet room, 34 queries of 34 subjects were recorded
in a computer room with noise. The latter actually make part of a
large set of 1148 queries of 79 subjects (see [9]). All queries were
sampled at a rate of 22.05 kHz and amplitude normalized (same
maximum for all queries). The queries were divided in four data
sets:

1. Develop: 4 singing sequences, 2 whistled sequences and 1
singing+whistling sequence (234 notes).

2. Syllables: 19 syllable sequences (414 notes, 15 subjects).

3. Words: 19 word sequences (657 notes, 17 subjects).

4. Whistled: 7 whistled sequences (283 notes, 4 subjects).

The first set can be used for algorithm development, the others for
testing. The test sets do not contain queries of subjects that appear
in the development set.

While singing with syllables, subjects used different types of
syllables (e.g. /la/, /di/, /na/). While singing with words, subjects
did not necessarily use the words appearing in the artist perfor-
mance, and often, they also used syllables at some instances.

1Both the queries and the evaluation software are available on
http://www.ipem.ugent.be/MAMI.

3.2. A robust alignment procedure

As in [5], we align the automatically generated transcription with
the correct transcription and we derive discrepancies from that
alignment. The DTW-procedure is described in [5] but altered in
three respects:

1. Rests are removed from the transcriptions before supplying
them to the aligner.

2. The original timing cost ctime for assigning generated seg-
ment (tg,i, tg,i+1) to correct segment (tc,j , tc,j+1) is re-
placed by a segment overlap cost

coverlap = 1 − min(tg,i+1, tc,j+1) − max(tg,i, tc,j)

tg,i+1 − tg,i

It the segments do not overlap in time, coverlap > 1.

3. The substitution cost is weighted with the fraction of the
generated segment that overlaps with the associated correct
segment (0 in case of no overlap). This way, short inserted
notes are aligned mainly on the basis of their positions, and
not so much on the basis of their (often wrong) frequencies.

Since the note onsets of some acoustic front-ends appear to be
shifted in time with respect to the correct note onsets, an optimal
time shift is superimposed on the generated onsets. The evaluation
software automatically determines an optimal shift per file (in the
range -2s to +2s) and keeps the corresponding alignment.

4. EXPERIMENTAL RESULTS

The main goal of our experiments is assess the differences between
the transcriptions generated by the tested front-ends and the corre-
sponding correct transcriptions provided with the tested queries2.

4.1. Considered front ends

The front-ends investigated here are: (1) Solo Explorer, devel-
oped at the Information Processing Lab of the University of Paris
[10] and now commercialized by Recognisoft; (2) Ear Analyzer,
a physiological ear model developed by Heinz & Brückmann [11]
at the Fraunhofer Institute in Ilmenau (Germany) and (3) MAMI,
the system described in this paper (40 channels with channel fre-
quencies ranging from 140 to 9000 Hz).

4.2. Determination of free parameters

The Solo Explorer and Ear Analyzer front-ends did not require any
free parameter settings. For the MAMI front-end, the free param-
eter were fixed on the basis of tests performed on the development
data. For SHS we found γ = 0.75, εF = 0.025; for segment la-
beling: V1,min = 0.375 and V2,min = 0.325 times the maximal
AMPEX and SHS evidences encountered in the development data;
for boundary elimination: εdepth = 0.3, (aLF , dLF ) = (3,−1.5)
and (aHF , dHF ) = (2, 0).

The most critical parameters are V1,min, V2,min and the (a, d)
sets used in boundary elimination. However, there is a broad area
around the chosen settings where the performance remains stable.

2We have evidence that there is a strong correlation between the error
measures computed for the front-end and the music retrieval error rates
obtained with the outputs of that front-end in a Query-by-Melody system.
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4.3. Evaluation of different front-ends

We tested all the acoustic front-ends on the three test sets. The
measured errors (see Table 1) are deleted and inserted notes (= seg-
mentation errors), and notes whose MIDI-code differs more than
1 from that of the corresponding correct note (=frequency errors).
The MAMI front-end outperforms the other front-ends on all three

test set error Evaluated acoustic front-ends
type Solo EarAn MAMI

syllables del+ins 20.1 15.9 10.4
∆F 2.9 4.6 4.1
total 23.0 ± 4.0 20.5 ± 3.9 15.5 ± 3.5

words del+ins 24.3 48.5 15.4
∆F 8.7 13.3 5.8
total 33.0 ± 3.6 61.8 ± 3.7 21.2 ± 3.1

whistled del+ins 24.7 35.0 20.8
∆F 4.2 2.5 2.8
total 28.9 ± 5.3 37.5 ± 5.6 23.6 ± 4.9

all data del+ins 23.1 35.2 15.0
∆F 5.9 8.4 4.7
total 29.0 ± 2.4 43.6 ± 2.6 19.7 ± 2.1

Table 1. Evaluation of three front-ends. Listed are percent seg-
mentation errors (del + ins) and frequency errors (∆F ). Total error
rates are given with their 95% confidence intervals.

test sets, be it that not all differences are statistically significant.
The MAMI front-end performs especially better on the transcrip-
tion of word sequences. Its transcriptions of whistled sequences
are not significantly better than those emerging from the Solo Ex-
plorer. For some files, Ear Analyzer produces just a few notes
(more than 80% note deletions), whereas for others it yields a very
reasonable performance.

4.4. Evaluation of different MAMI versions

In a second experiment we have compared different versions of
the MAMI front-end. The versions are annotated as Mxy with
x = 1 if boundary elimination was used and y = 1 if legato
processing was used. The performances of the different versions
are summarized in Table 2.

data set error Evaluated MAMI front-ends
type M00 M10 M01 M11

syllables del+ins 10.6 9.9 12.6 10.4
∆ 5.1 4.6 4.1 4.1

words del+ins 17.4 16.6 16.6 15.4
∆f 5.5 5.5 5.8 5.8

whistled del+ins 59.7 21.9 59.0 20.8
∆f 4.2 2.8 4.2 2.8

Table 2. Comparison of the four MAMI front-ends mentioned in
the text

The first apparent conclusion is that the boundary elimination
can avoid a lot of note insertions during whistling without increas-
ing the number of deletions in other types of notes.

The second conclusion is that legato processing is not use-
ful when it is applied directly after the pre-segmentation (as in

M01). It may even degrade the performance, as e.g. for syl-
lable sequences. However, it does yield some (non-statistically
significant) improvement when applied in combination with the
full-scale segmentation algorithm. We observed that in the devel-
opment data, the legato processor could find most of the legato’s
without introducing note insertions. In the test data however, 3 out
of 10 detected legato’s appeared to be false alarms.

5. CONCLUSIONS

The main conclusions of our work are that the newly presented
acoustic front-end can transcribe all types of vocal queries: its ac-
curacy (100% - error rate) ranges from 76 % for whistled queries
to 85% for syllable sequences. The newly presented front-end out-
performs the other tested state-of-the-art systems on all data sets. It
is also established that most of the errors are segmentation errors.
It is our feeling that in the future one should continue to improve
the query segmentation strategy.
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