
SELF-ADJUSTING BEAT DETECTION AND PREDICTION IN MUSIC 

Robert Harper and M.E. Jernigan 

Vision and Image Processing Lab, Systems Design Engineering,  
University of Waterloo, Waterloo, Ontario, Canada 

ABSTRACT 

This paper proposes a new approach to beat detection and 
prediction in music.  Recurrent timing networks are used to 
detect and predict periodicities in an onset stream and are 
contained within nodes that compete for selection as the best 
beat hypothesis.  Beat prediction nodes perform period self-
adjustment to better represent the detected music beat period.  
The system is tested using a variety of music from different 
genres and shows promise, in many cases with high correct 
beat detection percentages. 

1. INTRODUCTION 

Music is a complex audio signal essentially containing a 
cacophony of different sounds, yet, incredibly, the human 
brain is able to process this signal and extract information 
such as melody, harmony, and rhythm.  Most music listeners, 
regardless of musical training, have an inherent ability to feel 
the beat of the music and predict future beat locations.  While 
this ability comes naturally to humans, mimicking it with 
computational devices poses a significant challenge.  
 A number of algorithms, both real-time and offline, 
have been developed to detect the beat in a musical audio 
signal.  Previous approaches use a wide variety of techniques 
including signal energy periodicities [1], rule-based methods 
[2], and connectionist models [3], with varying degrees of 
success.  In this paper, we introduce a new, causal model for 
automatic beat detection and prediction. 

2. BEAT DETECTION AND PREDICTION 

Beat can be defined as a regularly occurring pulse that is 
delineated by the onset of notes or sounds within the music.  
It is at the temporal locations of this pulse or beat that 
listeners are likely to tap their feet.  The beat has both period 
and phase and it is our intention to be able to determine these 
parameters and use this information to detect future locations 
of the beat.  This process amounts to detecting the strongest 
periodicity in the progression of sound onsets in the input 
music signal.  For this purpose, we employ the use of 
recurrent timing networks, first introduced for the detection of 
musical beat by Cariani in [4]. 

 Recurrent timing networks are tapped delay loops 
that allow the input signal to be compared to itself at various 
instances in the past.  Figure 1 shows a recurrent timing net 
with a delay length of four.  When energy in the input signal 
is coincident with energy that is traveling through the delay 
loop, reinforcement occurs and the magnitude of the signal 
component contained within the loop is increased.  In this 
manner, periodic elements in the input signal with period 
equal to that of the network are reinforced. 
 Recurrent timing nets are able to detect patterns and 
periodicities in the input onset signal as well as predict the 
likelihood of an onset occurring in the input at any time in the 
future. At each point in time, the first node in the network 
receives an external input from the stream of sound onsets 
and an activation level from the timing network indicating the 
strength of the hypothesis that an input onset will be present.  
If an onset is present, activation is increased and the 
hypothesis is strengthened.  If an onset is absent, activation is 
decreased and the hypothesis is weakened.  In this way, a 
prediction of the location of the beat can be made with period 
equal to the length of the delay in the loop and phase equal to 
the phase of the largest activation level contained within the 
loop. 
 The function used here to grow or decay the 
activation level in the first node due to the presence or 
absence of an onset in the input signal differs significantly 
from that used by Cariani [4].  The function resembles the 
sigmoid function and is as follows: 

( )xxIxy −⋅⋅+= 1

where I is proportional to the strength of the input onset and 
lies in the interval [-0.5,1], x is the input from network, and y
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Figure 1: Recurrent timing network, delay of four 
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is the resulting activation level.  When no onset exists on the 
input, I assumes a negative value and causes the activation to 
decay. 

3. DESCRIPTION OF THE SYSTEM 

The proposed beat detection and prediction system contains 
three distinct stages.  The first stage processes the input audio 
signal and creates an onset stream in which impulses are 
produced when a sound onset is detected.  The process 
involved in this stage is not novel to this research and is 
based directly on the work of Scheirer [1], Klapuri [5], and 
Duxbury et al [6].  It will not be discussed further here. 
 The second stage involves the collection of inter-
onset interval statistics. The third stage contains competing 
beat detection nodes representing differing beat period 
hypotheses.  Both stages are discussed below. 

3.1. Inter-Onset Interval Statistic Collection 

Given that we intend to find a regular pulse occurring within 
the music onset stream, time intervals that are found to occur 
commonly between onsets represent valid hypotheses of the 
period of such a pulse.  In order to create beat period 
hypotheses that can be evaluated using recurrent timing 
networks of varying length, we must first determine dominant 
intervals between sound onsets. 

Time intervals are calculated between the most 
recent onset and previous onsets to an arbitrary maximum 
time delay.  These inter-onset intervals are collected in a 
histogram, which is allowed to decay with the passage of 
time as seen in [7].  Time intervals corresponding to local 
maxima in this histogram, calculated with some precision 
using 2nd-degree polynomial Newtonian interpolation, are 
selected as potential beat period hypotheses.  This 
information is passed to the final state, the Beat Detection 
Node Pool. 

3.2. Competing Beat Detection Nodes

The third and final stage of the proposed system contains a 
pool of detection nodes, each representing a beat period 
hypothesis, that compete for selection as the strongest, most 
likely, beat prediction.  The winning node’s beat prediction is 
used as the beat prediction output for the entire system. 
 Figure 2 shows the design of a beat detection node.  
Each node contains a recurrent timing network, used to detect 
the beat in the incoming onset stream, beat detection logic, a 
variable rate sampler, used to down-sample the input onset 
stream, a sample rate controller, used to adjust the down-
sample rate, and a node score generator, used to calculate the 
strength of the current node’s beat hypothesis. 
 The recurrent timing network, as discussed earlier, 
performs the beat detection and prediction in the incoming 
note onset stream.  The length of the network is calculated 
upon the creation of the node to contain as many delays as are 

needed to provide the desired beat period hypothesis.  Any 
required alteration of the node’s period hypothesis after 
creation is achieved through adjusting the down-sampling 
rate. 
 The beat detection and prediction logic uses the 
information within the recurrent timing network to generate a 
hypothesis of the location of the beat within the network.  
This amounts to the calculation of the phase of the beat.  Very 
simply, the position in the network with the highest activation 
energy is selected to represent the timing of the beat.  When 
this activation propagates to the first node, the beat prediction 
is aligned with the current input sample, and an impulse is 
sent out as the beat prediction output.  If this node is selected 
as the best beat hypothesis, this beat output impulse stream is 
used as the beat prediction output for the entire system.  A 
new location within the beat period is selected as the phase of 
the actual beat if the current guess fails to have the highest 
activation energy for N consecutive periods.  We have 
selected a value of four for N in our model. 
 The incoming onset stream is not fed directly into 
the recurrent timing network, but is first down-sampled as 
shown in Figure 2.  It is necessary that each node be able to 
adjust its period hypothesis in an attempt to exactly match the 
beat period of the input music signal.  Since the initial node 
period is set by the rough period approximation given by the 
location of a peak in the inter-onset interval histogram, it 
becomes necessary to fine-tune this estimate.  By adjusting 
the down-sampling frequency of the variable rate sampler on 
the input to the recurrent timing network, the beat period 
hypothesis of the current node can be fine-tuned without 
changing the length of the network. 
 The controller component that alters the sampling 
rate does so by comparing the incoming onset stream with the 
beat prediction output.  Onsets found near beat predictions 
are assumed to correspond to notes that are played on the beat 
in the input music signal.  Deviation is measured between 
each beat prediction and the closest onset in the input stream 
and an attempt is made to minimize this deviation for future 
predictions by altering the input sampling rate.  Through this 
process, both the period and phase of the current beat 
prediction are synchronized with the period and phase of the 
beat in the input signal.  For example, if the beat predictions 
are found to be lagging onsets that are most likely on the beat, 
the sample rate must be decreased to reduce the node period 
and halt the continuing lag.  Moreover, since a phase error 
has also been introduced in this scenario, the node period 
must be temporarily decreased to a rate below the actual beat 
period of the song to realign the beat prediction. 
 The controller function used to calculate the updated 
ideal node period after each beat prediction is: 

( ) ( ) ( ) ( ) ( )[ ]11 −− −⋅+⋅+= nnpnnnideal teteGteGtptp φ

where e(tn) is the error (in seconds) between the beat 
prediction at time tn and the closest onset, pideal(tn) is the ideal 
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new period, and p(tn-1) is the node period used between beat 
predictions at times tn-1 and tn.  Gφ is the phase correction 
gain, and Gp is the period correction gain.  In our 
implementation, we found setting both gains to unity to be 
ideal. 
 In the previous formula, the assumption was made 
that the closest onset to the beat prediction corresponded to a 
note onset lying on the beat.  Unfortunately, this is frequently 
not the case.  It is important to ensure that spurious onsets 
and onsets not located on the beat affect the determination of 
the new ideal period as little as possible.  To achieve this 
goal, expectancy curves [8] are centered on each beat 
prediction and are used to weight the likelihood that an onset 
in the vicinity of a beat prediction actually corresponds to a 
note on the beat.  We have selected the use of the Gaussian 
curve for our expectancy curve, such that onsets near the beat 
are given a large weight (they are expected) and onsets further 
from the predicted beat are given a small weight.  This weight 
is used to affect the degree to which the current node period is 
altered to reflect the new “ideal” period. 
 The final component within each node is the node 
score calculator.  The node score is used to select the best 
beat detection node for the beat prediction output of the entire 
system.  The score is calculated as a weighted sum of the 
energies of all of the nodes in the node pool.  The node energy 
is calculated as the RMS of the activation levels within the 
timing network.  This gives an indication of the degree to 
which strong periodic elements are detected in the timing 
network.  Since beat periods that are harmonics or 
subharmonics of a given beat period hypothesis represent the 
same or similar hypotheses, we desire the weights between 
such nodes to produce appropriate levels of reinforcement.  

Other period hypothesis ratios that are further from simple 
integer ratios most likely represent divergent hypotheses and 
therefore the weights between such nodes should be 
inhibitory.  The weights for node i affected by node j, wi,j, are 
calculated as: 

( )
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where ALCM(x,y) is the approximate least common multiple 
of x and y (approximate, meaning common within some small 
tolerance, ε), pi is the period of node i, and C is a coupling 
constant selected to be much larger than the maximum inter-
node weight.   

4. RESULTS 

We have selected four bases upon which to judge the 
proposed algorithm: percentage of subjectively selected 
“ground truth” beats correctly predicted by the system, 
percentage of predicted beats that are incorrect or spurious, 
the root mean squared error between predicted beats and 
“ground truth” beats, and the root mean squared error 
between correctly predicted beats and the closest note onset.  
Statistics are not collected in the first 8 seconds of the music 
clip to allow the system to settle. 
 Six songs are selected for evaluation from a range of 
music genres.  These genres are (1) Rhythm & Blues, (2) 
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Figure 2: Beat detection node design – internal connections and components 
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Classic Rock, (3) New Rock, (4) Jazz, (5) Classical, and (6) 
Dance/Techno.  Results are as follows: 

Song Percent 
Predicted 

Percent 
Spurious 

Beat RMS Onset 
RMS 

1 100% 27% 31.7 ms 12.8 ms 
2 91% 31% 23.8 ms 25.3 ms 
3 100% 0% 19.7 ms 14.9 ms 
4 46% 36% 23.2 ms 39.8 ms 
5 53% 50% 37.2 ms 24.5 ms 
6 84% 18% 14.5 ms 9.7 ms 

 Note that songs 1, 2, 3, and 6 show high correct 
prediction percentages and reasonably low spurious (incorrect 
predictions) percentages.  In fact, all spurious beat detections 
in songs 1 and 6 and more than half in song 2 are actually 
detected off-beats and therefore are essentially valid 
predictions.  The RMS error measurement between the true 
beat and the predicted beat in song 1 is artificially inflated 
due to inaccuracies in the determination of the “ground truth” 
beat.  Song 1 has a slight tempo change midway through the 
clip that the proposed system tracks but the “ground truth” 
beat measurement does not.  This explains the 
correspondingly low RMS error between the predicted beat 
and closest onsets.  The jazz and classical song beat 
prediction performance is very poor, showing correct 
detection percentages near 50% and high spurious beat 
detections. 

5. CONCLUSIONS AND FUTURE DIRECTIONS

A new system for the detection and prediction of the beat 
within a musical input was introduced in this paper.  The 
proposed system achieves high correct detection percentages 
in songs from genres that typically have a strong sense of the 
beat.  Selected songs from jazz and classical music genres 
pose a significant challenge and their performance within the 
proposed system is poor. 
 One limitation of the system in its current form is its 
tendency to jump between harmonics and subharmonics of 
the true input music tempo.  This behavior results in the 
appearance of large numbers of spurious detected beats that 
are actually located on the off-beat.  A more robust node 
scoring and competition mechanism or the addition of a slight 
bias towards favorable tempi (favorable in the sense of 
human listeners) may help correct this problem. 
 Another direction that may improve system 
performance is the addition of stronger cooperation between 

nodes representing harmonics of the same beat hypothesis.  
When these nodes experience small adjustments in period, 
effort could be made to maintain each node’s period as an 
integer multiple of the other related nodes.  Decisions 
regarding the phase of the beat prediction could also be 
shared between related nodes. 

The proposed system for beat detection and 
prediction shows promising initial results.  The causal and 
predictive capabilities of the system make it an ideal 
candidate for real-time implementation.  Further investigation 
is warranted into the node competition mechanism and 
increased node cooperation. 
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