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ABSTRACT

In beat tracking, a listener’s experience of the tempo from a
previous excerpt of a music piece is usually a good prediction of
the tempo of the following excerpt in the same piece of music.
Human beings have this ability to adaptively adjust his or her tap
to synchronize with the tempo of music. In this paper, an
adaptive learning approach based on maximum a posteriori
(MAP) estimation is proposed to integrate the propagated
knowledge from the previous excerpt and to infer the tempo. Our
experiments on real musical signals show that: (1) the extracted
tempo and beat using MAP are more robust and less sensitive to
the window size of the analysis; and (2) the adaptive framework
facilitates easy fusion using results and knowledge from different
analysis schemes.

1. INTRODUCTION

Musical content analysis is an emerging technique widely used
in indexing and organizing digital audio library, music
information retrieval, audio identification, structured audio
encoding [2, 4, 9], etc. It is well known that there are rich
structures in music, including temporal structures, such as beat
and tempo, rthythm, and regularity; and spectrum structures, such
as chord and harmonic. Uncovering these structures from music
will contribute much to the compact and efficient representations
of musical signals.

Much work has been done on music with symbolic
representations, such as MIDI, where the music score with notes,
durations, and onsets, are given [1]. However, it is still an
unsolvable problem for real audio musical signals where only the
acoustical realization of music is provided. Learning from the
fact that an untrained listener can understand music and perceive
the regular structure to some extent without any prior knowledge,
it should be possible to extract these low-level structures from
the acoustical signal. As many researchers have pointed out, the
beat or tempo is a human intuitive perception of music. Almost
every music listener can tap his or her hand or foot to
synchronize with the tempo of music. It is clear that the beat and
tempo can reveal some low-level structure, from which more
high-level structures can be inferred [8, 9]. Considering their
importance to the human perception of music, it is valuable to
investigate how to robustly extract them from real musical
signals.

So far there are many studies on beat and tempo analysis of
audio signals. Scheirer [5] describes a system based on the
filter-bank analysis and tuned resonators. The tempo and beat are
extracted by fusing the outputs of all the filters. Goto [8]
presents a system to track the beat at the different levels for the
drum-less music based on the chord change detection and
multiple agent architecture. It applied the observation that the
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frequency spectrum changes significantly when a chord is
changed and is relatively stable otherwise. Dixon [10] describes
a system that can handle symbolic and audio signals. The tempo
and beat onset are found by searching multiple hypotheses using
multiple agents. Foote [6] introduces the beat spectrum whose
peaks reveal the structure of music. In [4], a maximum likelihood
(ML) algorithm is proposed to estimate the tempo of an excerpt
from its amplitude envelope based on a linear regression model.

Although the existing studies have shown some good
performance, some issues are not yet addressed. Human beings
have the ability to predict the future tempo and adapt his or her
foot-tapping to synchronize with music based on the knowledge
perceived from the previous excerpt. However the conventional
methods cannot do it. And they are much sensitive to the
granularity of the tempo analysis [10].

In this paper, an adaptive learning approach based on
maximum a posteriori (MAP) is proposed to alleviate the
difficulty. The proposed MAP algorithm integrates the prior
knowledge of the tempo learned from the previous excerpt and
newly observed evidences to infer the tempo in the current
excerpt. Our experimental results indicate that the MAP-derived
tempo estimation is more robust than the ML-based method for
the variable granularity of the beat analysis.

The rest of the paper is organized as follows. In Section 2,
we formulate the tempo and beat analysis problem. In Section 3,
a MAP-based adaptive learning approach with an EM algorithm
is proposed. We then report on some experimental results and
detailed analysis in Section 4. Finally we summarize our
findings in Section 5.

2. PROBLEM FORMULATION

The beat of a piece of music is the sequence of equally spaced
phenomenal impulses, which define a tempo for the music [5, &,
10]. In this section we will describe the tempo induction from
the observed features of the musical signal.

2.1. Tempo Induction from Music Signal

Music signals are often highly structured. This is revealed from
its temporal amplitude envelop of the signal and its spectrogram.
Figure 1 shows this property in the temporal (left figure:
log-energy envelope) and spectral (right figure) domains
respectively using an instance of a 5-s piece of music (“Pop
Sunshine” [10]). Both figures clearly illustrate that there is a
regular pattern, which defines its tempo and beat onset. Our task
is to learn the tempo and its onset (phase) from the audio signal
Given a piece of music a feature sequence can be extracted
from the temporal [4, 5, 10] or spectral domain [6, 8]. If the
music has a strong rhythm, it is easy to detect its tempo and beat
(See Figure 1). Otherwise, it is better to adopt the feature
extracted from the spectral domain. In [8], the beat and tempo of
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drum-less music is analyzed by detecting chord changes. Here
we consider a general notation of features.

[T
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Figure 1 The amplitude envelope and its corresponding

spectrogram (an excerpt from 1s to 6s for music “Pop
Sunshine” labeled as “Y” in [10])

Let X = (51,52,- . -,5T) denote a sequence of D-dimensional
feature vectors extracted from the musical signal, and 7 be the
length of the sequence. A temporal window is applied to analyze
the temporal pattern. Generally its size should cover a few
periods of the slowest tempo. The wider the window is, the more
stable the estimated tempo. But a wide window will miss fast
changes in tempo. This is a general problem of how to choose
the granularity. Assume that the window (or block) size is L, and
there are M blocks, the feature sequence X can be re-denoted
as X =(0,,0,,--,0,,) » Where O, = (01”0;’...’02) . Only the
tempo values in a range of’ [a,b] are considered. Then the tempo
induction can be formulated as

C" = argmax P(C|X) M

CeAll possible
temposequences

where C = (Cncz e, Cy ), ¢, €la,b] is a possible tempo
sequence and C* = (cf,c; ~~~,c;4 ),c: € [a,b] the optimal one.

It is not a trivial task to find a globally optimal solution from
Eq. (1). To simplify it the independence assumption is often
made. The past work assumes that the tempo c: is estimated
only from the blockQ, [4]. Here the first order dependency is

brought in, which is particularly interesting in the online
real-time analysis. Higher-level rhythms than the detected tempo
are not considered. This means there is no hidden structure for
the tempo sequence. So Eq.(1) can be re-formulated as
M
C’ = argmax HP(O,‘C)' P(c,‘cr_]) 2)

Ce All possible ;]
temposequences

where the first term in the right of Eq.(2) is the likelihood of
the evidence O, generated by the tempo ¢, , and the second is the
probability of ¢, given the previous tempo value ¢, | .
P(c1 ‘co): P(C1) is the prior knowledge about the tempo

distribution of music. Unfortunately these two terms are

unknown up to now. In the following sub-sections we will apply

a linear regression function to model P(Or‘c ), and a logistic
t

function to simulate the conditional probability P(c; ‘c 1).
-

2.2. Linear Regression Model

We assume that the pattern occurs periodically in a window of
the temporal analysis. It is reasonable when its size is small.
Given a block of sub-sequence evidence, 0,2 linear regression

model is used to fit the evidence. It is defined as
o,=A"0, +06 3)

where 4'is a transformation matrix, @' = (91'792'7...701’) )T a
prediction error vector with the same dimension as the feature
vector, and T, the beat period proportional to the inverse of its
tempo (e.g. if the tempo is 30bpm, its beat period is 2 second).
Hereafter the range of the beat period is denoted [ra 9Th]' Eq.(3)
means that the k-th observation is predicted by the(k —t,)-th
observation with a prediction error®’. In this paper a diagonal
transformation matrix is chosen, and the prediction error vector
variable, ®' , is assumed to be a multivariate Gaussian

distribution with a zero mean and a diagonal covariance, X ' ,
which means that we make an assumption of independence
among the components of the feature vector and among the
prediction errors. So the parameters of the model are the

diagonal transformation matrix, diag(Af)Z (OCIr ,00,° -,062)), the

variances, diag(zl ) = (0'1’,65, ooy 0'2)), and the beat period, T, .
With the above assumptions, the probability distribution of

the observed feature, 5; , is also a Gaussian distribution with a

mean equal to 4’ .5’ _ and the covariance, Y’ , i.e.
k-t ’ ’
b

A1,3)~N45, %) @

k-,

Plof
So the likelihood of the evidence,Q,, in Eq.(2) can be

derived from Eq.(4) as (here defined in log-domain)
10g(P(0)c,)) = loglPl0|4',7,, ') = T logl Plai |47, 2) )
k

where T, is the beat period of the tempo ¢, .

2.3. Approximate Conditional Probability of Tempo

It is unknown which distribution fits well the conditional
probability of the tempo, P(ct‘ct_l ), in Eq.(2). Generally we have

some prior knowledge about the possible value of the detected
tempo (or beat period). And the likelihood defined in Eq.(5) is
related to the probability of a tempo occurred. One possible way
is to apply a logistic function to approximate the conditional
probability of the tempo.

Given a blockQ,_, the likelihood of any tempo can be

—1 >
calculated from Eq.(5). From these likelihood the conditional
probability can be derived and will be treated as the prior
probability of the tempo when inferring the tempo from the
block O, . It can be simulated using a logistic function, i.e.

1 (6)
1+exp(-4-(Plo]4' 7, .= )-B))
where A is a scale coefficient and B a bias. The

P(T[ 1 ):

normalization is performed to make zr p(ft ‘TH) =1-

3. ADAPTIVE LEARNING

The tempo can be estimated based on the definitions in
Eqgs.(2)~(6). The global optimization of Eq. (2) is not a trivial
task. The conventional method is to transform it into many local
optimization problems, i.e. the tempo of thec, is only estimated
from the data, O, . And the second term in Eq. (2) is ignored. [4]

uses the method to estimate the tempo based on the ML criterion.
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This method misses the dependence among the consecutive
analysis blocks. So it cannot accumulate the previously learned
knowledge to improve the accuracy of the current estimation of
the tempo. But human beings can have the ability.

While human beings enjoy music, his or her tapping may be
faster or slower than the tempo of the music in the beginning,
especially for unfamiliar music. However, he or she can quickly
adjust his or her tapping to follow the tempo of the music based
on the past experience. It is interesting to design a learning
algorithm to simulate this human behavior. Here we apply the
MAP algorithm to fuse prior knowledge of the learned tempo
into the evidence observed later in order to improve the accuracy
and robustness of the estimated tempo.

3.1. Maximum a Posteriori Algorithm

The proposed adaptive learning approach is to fuse the
propagated knowledge learned from the previous block into the
current observation using the MAP estimation. A general
description of MAP estimation is given in [3]. Given Egs.
(2)~(6), it is possible to infer the tempo sequence from any piece
of music by a global optimization. Unfortunately its cost will be
expensive. Here an approximate method is used, where only one
local optimal tempo is kept as a solution for a sub-sequence.
Then Eq. (2) is modified as

))+ n- log(P(Tr ‘Tt—l ))’

T, = arg[ma]x(l -n)- log(P(Ot
re,Mm] (7

TE(T, T
Heren is a coefficient to weight the prior knowledge. The

first term of the right side is the likelihood of the
sub-sequence O,, given the linear regression model, which is

calculated from Eq.(5). And the second is our prior knowledge
about the beat period for the block, O,, given the known

previous beat period.

To figure out the optimization problem defined in Eq.(7), the
EM algorithm is applied. Given a possible beat period, the
coefficients of the transformation matrix, (o ,aé,---,a;)), and

the variance of the prediction error, (61',6;;--,61’)) in Eq.(7)
can be estimated. Then the optimal beat period, which gives the
maximum posterior probability, is chosen according to Eq. (7).

The iterative EM estimation algorithm is shown in the following:

300, () Elo) ) ()
ZEKM,, &) )e ()J

zE[ ()0t ) ®Fl, ()] ©

®)

o (j+1)=
ot ]+1

where o, ( j) is the k-th diagonal component in the
transformation matrix at the j-th iteration, o} ( j)the variance of
the prediction error for the k-t& component, o (k), of the
feature, and ke[l1,D],te[L,M].

3.2. Beat Onset Decision

After the tempo or beat period is determined with Eq.(7), the
beat onset will then be decided [4]. Assume that the detected

"
. . I YN 2 t 1
beat period is T, for a sub-sequence 0, = (01 ,05,° "OL)’ and its

corresponding energy envelope iSEnl Z(enlt,en;;n,en'L), the

sub-sequence is equally divided by the beat period.
N\ |t t N

Let Or(l)_(( RIS be the feature

vector in the i-th (with je [1, L/‘L',*] ) beat period,
and Ent(l) = (en(’[—l)-rf+l’en(ti—l)~f7+2’. ”’en(t[fl)"r,'#rf )

The beat onset is defined as the time with the maximal
energy. To extract the beat onset in each beat period, the
averaging beat onset, on', is first calculated from the averaging
energy envelope according to the following:

1 L/rf
* zen(ti—l)‘r#/ ' (19)
jee 1 Ty Gim '

With the assumption that the onset in each beat period will
have a bias (here maximum bias is set to 10% of the beat period)
centered at the average onset, the real onset is obtained by
searching the time with the maximal energy during the above
constrained range. It is determined as

or(i)= argmax ed .. (1)

« . i-1)T,+
Jelort —biast, orl +biast, | 1)+

4. EXPERIMENTAL ANALYSIS

To evaluate our proposed tempo and beat tracking algorithm, we
use 5 pieces of music, sampled at 22,050 Hz, each with about 20
seconds in length, the same data used by Dixon' as described in
Table 1. More detail can be found in [10].

ID | Style Description

S&Y|Motow [More freedom to anticipate, greater tempo
n/Soul |fluctuations, more syncopation. Medium difficulty

O |Country(Non-prominent drum, much lower correlation
song [between beat and events. Difficult

R | Bossa [Syncopated guitar & vocals, very little percussion.
nova |[Difficult even for human

M | Jazz |Complex & syncopated rhythms

swing |Difficult even for musically trained

Table 1 Characteristics of experimental audio data [10]

Here the energy and 12-dimension MFCC are extracted from
the temporal and spectral domains using a window size of 23.2
milliseconds (ms) with 11.6ms overlapping. The detected tempo
value is from 30bpm (beat period 2s) to 250bpm (beat period
0.24s). The prior weight, 7, is set to 0.5.

4.1. MAP vs. ML-based Tempo Induction

First we compare the results of our proposed MAP-based tempo
learning approach with that of ML-based method [4]. The
estimated tempo sequences, using the energy envelope features
defined earlier and MFCC features commonly adopted in speech
analysis (e.g. [7]), are reported in Tables 2 and 3, respectively,
based on a temporal window size of 5 and 10 seconds. The
second column of Tables 2 and 3 indicates the tempo range of
each piece of music as a ground truth. From these two tables, we
can see that MAP-based learning improves the accuracy and
robustness of the tempo, especially for the case of the short
analysis windows regardless of the feature type. For example,
the tempo sequence of music ID “O” for the MAP-based case is

! Data download from http://www.ai.univie.ac.at/~simon/.
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138-138-138-138 (tempo value at each S5s segment for L=5sec)
while that of the ML-based analysis is 138-135-176-138 (See
Table 2). Comparing the results between Table 2 and Table 3, it
can be concluded that the MFCC features extracted from the
frequency domain can generally give better tempo detection than
the temporal energy feature. Frequency domain chord features
were also shown to be effective in handling drum-less music [8].

ID| Tempo Window Size L=5s (bpm) L=10s (bpm)

(bpm) [10] ML MAP ML | MAP

S| 96-104 | 49-97-196-196 | 49-97-97-97 | 49-196 | 49-97
Y| 127-136 | 82-87-85-125 82-87-85-86 | 85-170 | 85-128
O| 136-140 |138-135-176-138|138-138-138-138|138-138|138-138
R| 128-134 |[135-155-103-66 | 135-155-131-66 | 135-65 | 135-66
M| 180-193 | 189-63-62-182 |189-189-62-182|189-182|189-182

Table 2 Comparison between the ML- and MAP-based
tempo induction algorithms using energy features

ID| Tempo Window Size L=5s (bpm) L=10s (bpm)

(bpm) [10] ML MAP ML | MAP

96-104 49-97-99-97 49-49-97-97 49-99 | 49-97

127-136 [32-128-131-125| 32-65-128-128 [128-128|128-128

136-140 (142-135-142-135(142-138-138-138|138-138|138-138

128-134 |135-128-103-65|135-135-135-65 | 135-65 |135-135

SR O|<|w»

180-193 |189-63-189-176 |189-189-189-182(189-182|189-182

Table 3 Comparison between the ML- and MAP-based
tempo induction using MFCC features

4.2. Beat Onset Analysis

Figure 2 shows the beat onsets for two pieces of music, “Y” and
“M”, based on MAP-based adaptive learning and the 10s-
window to analyze the tempo. The vertical blue lines show the
positions of the beat onset. Music “Y” is relatively simpler than
music “M”. So the beat onsets for “Y” match very well with
their real positions while for “M” there are some beat onsets
lagged a little behind the real positions. These figures also
illustrate that most of the beat onsets occurs at the positions
where the spectrogram significantly changes, a similar
conclusion drawn in [8].

::l;r' gt R

C=THE] I D T F) i

Figure 2 Beat onsets for music “M” (left) and “Y” (right) (an
excerpt from 1s to 6s)

4.3. Analysis of Posterior Tempo Probability

Now we will discuss some properties of the learned posterior
tempo probability distributions. Figure 3 shows the posterior
tempo probabilities for music excerpts “M” and “Y”, obtained
with the MAP-based adaptive learning algorithm and the
10s-window. We can see the obvious periodic peaks in these two
figures. These local maximum probability values occur almost at
the multiple or multiple-division of the real tempo values (189
bpm for “M” and 128bpm for “Y™). This relationship among the
peaks is similar to that between the fundamental pitch and its

corresponding harmonics in speech analysis. This is a reason that
some of the detected tempos are nearly close to the half of the
real tempo values (see the corresponding rows in Table 2).

,.-‘f_\‘u, g II'LIJ/\-‘_'\__ .
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Figure 3 Posterior tempo probabilities for music “M” (left)
and “Y” (right) (an excerpt from 10s to 20s)

5. CONCLUSION

An adaptive learning approach based on maximum a posteriori
(MAP) is proposed to infer the tempos of music. This method
can integrate the previous learned knowledge about the tempo
into the newly observed evidences. This method of propagating
and fusing knowledge can partially simulate human capability of
beat perception. Our experiments show that the MAP-based
method can detect the tempo more accurately and more robustly
than the conventional ML-based algorithms. With the improved
capability, it allows us to use a short window to analyze the
tempo, which is interesting in the case of the online tempo
tracking. The posterior tempo probability is a good measure of
confidence in the estimated tempo values. Further work will be
conducted to study its property on a large collection of audio
data and learn more high-level structures based on the low-level
structures uncovered by tempo and beat analysis.
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