
A COMPARISON OF HUMAN AND AUTOMATIC MUSICAL GENRE CLASSIFICATION

S. Lippens, J.P Martens, T. De Mulder
�

Ghent University
Department of Electronics and Information Systems

Sint-Pietersnieuwstraat 41
B9000 Gent, Belgium

G. Tzanetakis
�

Carnegie Mellon University
Computer Science Department
5000 Forbes Avenue, Pittsburgh

PA 15218 USA

ABSTRACT

Recently there has been an increasing amount of work in the
area of automatic genre classification of music in audio format. In
addition to automatically structuring large music collections such
classification can be used as a way to evaluate features for describ-
ing musical content. However the evaluation and comparison of
genre classification systems is hindered by the subjective percep-
tion of genre definitions by users. In this work we describe a set of
experiments in automatic musical genre classification. An impor-
tant contribution of this work is the comparison of the automatic
results with human genre classifications on the same dataset. The
results show that, although there is room for improvement, genre
classification is inherently subjective and therefore perfect results
can not be expected neither from automatic nor human classifi-
cation. The experiments also show that features derived from an
auditory model have similar performance with features based on
Mel-Frequency Cepstral Coefficients (MFCC).

1. INTRODUCTION

Musical genres are categorical labels that are created by humans
in order to organize the vast universe of music. They arise through
a complex interplay of culture, art, and market forces. The bound-
aries between different genres are not well defined and therefore
it is difficult to find precise definitions and mathematical formulas
that can automatically identify the genre of a piece of music. A
listener judges the genre of a piece of music on the basis of objec-
tive and subjective measures. Table 1 shows the number of gen-
res used by different musical content providers and illustrates the
lack of consensus about musical genres. This variation is caused
by differences about the existence, importance, boundaries and hi-
erarchy of genres between different groups of people. A further
complication arises from sales related influences (e.g. targeting a
specific audience) which result in pseudo-genres such as “compi-
lations”, “box sets” and “children”.

Based on these observations the task of automatic genre classi-
fication directly from audio signals is not trivial. Automatic music
genre classification allows the automatic structuring and organiza-
tion of large archives of music and also provides a good way to
compare and evaluate feature sets that attempt to represent musi-
cal content. Recently a number of automatic musical genre clas-
sification algorithms that combine signal processing and statistical
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All Music 691
mp3.com 288
Yahoo! 116
Indiana University 31
Amazon 25
Sony 25
Altavista 25

radio.real.com 18
BPI 17
Warner Bros 16
Atlantis Records 13
Virgin 13
IFPI Belgium 11
MTV 5

Table 1. A snapshot of some music related organizations and the
number of genres they use on their website (February 2003).

pattern classification have been proposed. However, to the best
of our knowledge there has not been any attempt to compare the
outputs of automatic genre classification algorithms with human
annotations by average listeners. In this paper, we describe a set of
experiments that compare automatically computed labels with hu-
man annotations for the task of musical genre classification using
the same dataset. In addition we show that the use of a computa-
tionally demanding but psychoacoustically more accurate auditory
model as a feature front end does not seem to provide any signif-
icant advantage for musical genre classification compared to the
use of the standard Mel Frequency Cepstral Coefficients.

1.1. Related Work

Previous work in the area of automatic musical genre classification
includes: features computed based on wavelet analysis [1], visual
texture features of spectrograms [2], and a specialized architecture
called “Explicit Time Modeling Neural Networks” [3]. A compar-
ison of audio features with features extracted from the analysis of
cultural meta-data such as download usage patterns is presented
in [4]. A detailed study of automatic musical genre classification
is presented in [5] and the proposed features have been used in
the experiments presented in this paper. A more detailed descrip-
tion of the experiments presented in this paper can be found in
[6]. A recent review of representing musical genre in digital mu-
sic distribution is provided in [7] which covers manual annotation,
automatic methods and usage-based methods such as collaborative
filtering. To the best of our knowledge, the only result in the per-
formance of humans for the task of musical genre classification
is [8] which reports classification accuracy of approximately � � �
using 10 genres. No attempt for comparison with automatic algo-
rithms is made. The more general problem of organizing digital
collections of music for searching and browsing is the topic of the
emerging research area of Music Information Retrieval (two good
recent overviews of MIR are [9, 10]).
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2. FEATURE EXTRACTION AND CLASSIFICATION

Most of the features investigated in this paper were proposed in
[5]. These features attempt to represent timbral texture, rhythmic
content and pitch content information. The features used to rep-
resent timbral texture are based on standard features proposed for
music-speech discrimination and speech recognition. They consist
of a set of 4 features derived from the Short Time Fourier Trans-
form (STFT) magnitude spectrum such as the Spectral Centroid
(defined as the first moment of the magnitude spectrum) as well
as the first 5 Mel-Frequency Cepstral Coefficients (MFCC) [11].
These features are computed using an analysis window of 20 mil-
liseconds. Means and variances of the features over a larger texture
window (1 second) with a hop size of 20 milliseconds are com-
puted resulting in a set of 18 features. An additional feature (the
percentage of low energy frames over the texture window) results
in a timbral texture feature vector of 19 dimensions.

The basis of representing rhythmic content is the calculation
of a Beat Histogram (BH) that shows the distribution of various
beat periodicities of the signal. For example a piece with tempo 60
Beats-per-Minute (BPM) would exhibit BH peaks at 60 and 120
BPM. The BH is calculated using periodicity detection in multiple
octave channels that are computed using a Discrete Wavelet Trans-
form. In [5], six numerical features that attempt to summarize the
BH are computed and used for classification.

In addition to the feature set proposed in [5] we explored the
use of an auditory model as a front-end for feature calculation. The
model is described in [12] and attempts to represent in more detail
the physiology of the human ear. More specifically it implements
the transition from waveform in the air to activity pattern in the
auditory nerves with the following stages: 1) a low-pass filter (2nd
order, 10 dB boost at 4kHz) mimics the propagation in the outer
and middle ear; 2) 40 band-pass filters model the mechanical fil-
tering in the cochlea (the central frequencies are uniformly spaced
on a critical band frequency scale and have 3dB bandwidths of one
critical band); 3) 40 hair cell models convert the filter outputs to
neural signals (this incorporates compression of dynamic range,
half-wave rectification, short term adaptation and coding of tem-
poral information as found in physiological measurements); 4) 40
low-pass filters finally extract neural signal intensities which are
sampled every 10 milliseconds. Further calculation of the timbral
features is very similar to the calculation of the MFCC based fea-
tures. Instead of using the logarithm of the STFT coefficients as in
the case of the standard MFCC calculation, the 40 channel values
were used to calculate the DCT coefficients. Means and variances
of these DCT coefficients over a larger window (typically 30 sec-
onds) result in the auditory model based feature vector. We exper-
imented with feature sets derived from the first 5, 7, 9, 11 and 13
DCT coefficients of the auditory model’s output.

For classification, a number of standard statistical pattern recog-
nition classifiers were used. The simple Gaussian (GS) classi-
fier, modeling each class probability density function (pdf) as a
multidimensional Gaussian distribution whose parameters are esti-
mated on the training set. In the Gaussian Mixture Model (GMM),
each class pdf is assumed to be a mixture of K weighted multidi-
mensional Gaussian distributions. The iterative Expectation Maxi-
mization (EM) algorithm can be used to estimate the parameters of
each Gaussian component and the mixture weights. The K-nearest
neighbor classifier (KNN) is an example of a non-parametric clas-
sifier where each sample is labeled according to the majority of its
K nearest neighbors. More information about these classifiers and

statistical pattern recognition in general can be found in [13].

3. EVALUATION

The typical approach in the published literature on genre classi-
fication has been to use the labels provided by some authority,
train classifiers and present classification accuracy results by us-
ing cross-validation. These results are difficult to interpret be-
cause they are not directly comparable with the performance of
humans for the same task. In order to put our classification results
in context we establish both lower (random classification) and up-
per bounds (human classification) on the classification accuracy.

3.1. Establishing bounds for the classification results

In this section we will try to sketch a profile of the dataset we
used both in a qualitative and quantitative way. This is important
because the used dataset has a huge influence on the achievable
results and this fact hinders the comparison among different ex-
periments with different datasets.

The MAMI dataset is a collection of 160 full length tracks of
music. This dataset is used for a variety of research in the area
of content based musical audio mining, with a focus on ‘query by
humming’. The construction of the set is aimed at giving a repre-
sentative view on the western music consumption today, based on
the sales figures from IFPI (the International Federation of Phono-
graphic Industry) in Belgium for the year 2000. Originally, the
tracks were annotated with 11 musical genres, according to the
classification of IFPI. Initial experiments made clear that this la-
beling was not appropriate for training genre classifiers. For ex-
ample some genres had few examples or were very heterogeneous.
In order to address this issue, a set of 6 basic genres was defined
and user experiments were conducted to confirm that their defini-
tions are consistent among different subjects.

A new labeling of the dataset was obtained by surveying 27
human listeners. We let them listen to the central 30 seconds of
each track � ( � = 1 to 160) and asked them independently to
choose a musical genre � out of 6 possibilities: classical, dance,
pop, rap, rock or other (the latter was for the case none of the pre-
vious was really applicable). For each track � we define � � � �	 as
the number of votes for genre � . The maximum number of votes
among the genres, called � � � �� � � , indicates the elected genre � � � � ,
which is used as the new label for each track. This results in the
following structure of the MAMI dataset: 24 classical, 18 dance,
69 pop, 8 rap, 25 rock and 16 other tracks. As an extra, we have

� � � �� � � at our disposal as a measure of unanimity about the musi-
cal genre. Figure 1 shows the histogram of � � � �� � � for the whole
dataset. Besides the peak around 27 votes, there is a considerable
second peak around 15 votes. These are mainly tracks with many
votes for ‘other’ and little consensus among the human listeners.
The average of � � � �� � � is 20.6 votes.

Another application of the survey is the evaluation of the hu-
man classification. For each human respondent we compared their
selected genres with � � � � , leading to a percentage corresponding
classification. The 27 listeners achieve 76% corresponding clas-
sification on average (further referred to as � � ), with individual
results ranging from minimum 57% to maximum 86%. All these
presented measures indicate that there is a high degree of subjec-
tivity involved with genres in the MAMI dataset. This situation is
clearly not optimal for an unambiguous training of musical gen-
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Fig. 1. histogram of the number of votes for the elected genre

res. On the other hand, the dataset is more representative for real
life applications than a dataset with a well thought-out selection
of genres and examples. To examine the influence of this fact we
selected the 98 tracks with the following two properties: 1) the
genre � � � � can be all but ‘other’ and 2) � � � �� 	 � is 18 or more.
We call this constructed subset of the MAMI dataset the ‘MAMI2’
dataset. On this dataset the human listeners achieve 90% average
corresponding classification ( � � ).

Besides the human performance on the dataset, which we shall
refer to as an upper bound ( � � ), we can also define lower bounds
to the performance of automatic classification. Those bounds give
us a so called reference framework for putting the achieved results
of automatic classification in perspective.

A straightforward definition of a lower bound is random classi-
fication where every class (genre) has an equal probability of selec-
tion. If there are � classes � � , the expected correct classification
is � � � . A more advanced scheme for random classification uses
the prior probabilities of the classes. We define the number of in-
stances in each class � � ( � � � � � ) as � � and the total number
of instances as �  " � � � . The prior probability of an instance
belonging to class � � is then % & � � )  � � � � . In the prior prob-
ability random classification scheme we select each class � � with
its prior probability % & � � ) . The expected correct classification is
in this case � -  " � % 0 & � � ) . Because the bayesian decision
theory employed for the automatic classification is based on prior
probabilities, � - is more appropriate to use as a lower bound in
the reference framework.

3.2. Experiments and Results

A number of experiments were conducted in order to examine
different choices in the feature extraction and classification sys-
tem. The experiments were implemented using Marsyas (http:
//marsyas.sourceforge.net), a free software framework
for rapid development and evaluation of Computer Audition ap-
plications. Feature extraction is a key operation because it has
to capture precisely those components of the input signal that de-
termine the genre. We took the central 30 seconds of each track
of the MAMI dataset and applied all the possible combinations
of feature sets and classification models to it. The leave-one-out
evaluation method was used where each example is withheld for
testing and the remaining examples are used for training. The

classified class
as classical dance pop rap rock other

classical .75 .00 .07 .00 .04 .25
dance .04 .83 .17 .50 .12 .00
pop .04 .17 .48 .25 .20 .13
rap .00 .00 .00 .13 .00 .00
rock .08 .00 .13 .00 .60 .00
other .08 .00 .14 .13 .04 .63

Table 2. Confusion matrix for the MFCC+rhythm feature set in
combination with a GS classifier.

best result we obtained was 58% correct classification with just
the timbral texture features (STFT and MFCC) and the 3-nearest
neighbor classifier. If we look at the top 10 results (ranging from
58% to 55%), the combined set of MFCC-based features and Beat
Histogram features, hereafter called the MFCC+Rhythm feature
set, appears 5 times, both in combination with nearest neighbor
classifiers and parametric models (Single Gaussian and Gaussian
Mixture Model). Other feature sets only seem to perform well in
combination with nearest neighbor classifiers. Another good point
for the MFCC+rhythm feature set is the fact that even its worst re-
sult is better than the average performance measured for the other
sets. As an illustration, table 2 shows the confusion matrix for the
experiment with this feature extractor and GS classifier.

To examine the auditory model based features, we used fea-
ture sets derived from the first 5, 7, 9, 11 and 13 DCT coefficients.
This achieved no better results than the comparable MFCC-based
feature extractor. This indicates that the use of more computation-
ally demanding but psychoacoustically accurate auditory model as
a feature front-end doesn’t make a big difference for the task of
automatic musical genre classification. The best results were ac-
quired using the first 5 DCT coefficients. The use of more co-
efficients resulted in a lower performance. This is in accordance
with [5].

In the previous section about the reference framework, we al-
ready introduced the use of different datasets. Figure 2 shows the
results of automatic classification with the MFCC+rhythm features
and the GS classifier for the two datasets MAMI and MAMI2.
Also the reference framework is shown. The automatic classifica-
tion clearly outperforms the random classification as expected, but
there’s still a gap of around 20% with the human classification.

We also focused on the influence of the choice of fragments
in the tracks. Initially one fragment with varying length (1 to 30
seconds) was used per track. It always positioned in the middle
of the track so no automatic segmentation was used for fragment
selection. For features aimed to capture the musical texture, we did
not experience significant improvements using fragments longer
than 10 seconds, even 5 seconds were sufficient in most cases.
The beat related features on the contrary showed a slight increase
of performance with longer fragments.

The use of fragments of tracks made it possible to do a varia-
tion on the classification approach. We took as many as possible
non overlapping fragments of 30 seconds per track. For each track
we trained the system with all the fragments of the other tracks
and then classified all the fragments of the track with the trained
model. Finally we classified the whole track according to the most
estimated genre among its fragments. We found no significant
improvement of the classification accuracy of this multi-fragment
track classification scheme over the standard classification scheme
with only one central fragment per track. We think the use of extra
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Fig. 2. The results of automatic classification with the
MFCC+rhythm feature set and a GS classifier for different datasets
and an alternative rating scheme. The reference framework ( � �
and � � ) is also shown.

fragments per track in combination with the not optimal character
of the MAMI dataset causes an extra blurring of the trained genre
model, so there is no noticeable gain.

In a last set of experiments we used an alternative ranking
scheme based on the human votes. The purpose was to examine
the presence of so called ‘graceful errors’ [7]. E.g., errors like a
classification of a particular ‘pop’ track as ‘soft rock’ are subjec-
tively more understandable and should be less punished than errors
like a ‘baroque’ track being classified as ‘hardcore punk’. Practi-
cally, for each track � we rated the classification in a genre � with
a score � 	 � � � � 	 � �� � � , with � 	 � � the number of votes for genre

� for that track � and � 	 � �� � � the number of votes for the elected
genre, as previously defined. The right part of figure 2 shows the
results of this experiment and should be compared with the first
three bars of the left part of the figure (unweighted rating with
the same dataset). The human classification clearly benefits of the
milder validation, but the automatic classification shows less im-
provement in accuracy. It is even less than the improvement of the
random classification, which indicates that no substantial presence
of graceful errors can be identified.

4. CONCLUSIONS AND FUTURE WORK

A set of experiments comparing human and automatic musical
genre classification was presented. The results indicate that there
is significant subjectivity in genre annotations by humans, and that
there is still a significant gap between automatic and human classi-
fications. In addition it was found that the features emerging from
a computationally intensive auditory model do not outperform the
standard MFCC features for the presented task.

In the future, we plan to explore new feature sets as well as
more classifiers, such as Support Vector Machines (SVM) [14],
in the hope that by doing so the current gap between automatic
algorithms and human annotations of musical genre classification
will gradually disappear.
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