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ABSTRACT

There exists a great diversity in the area of automatic audio seg-
mentation since audio can be segmented based on various desirable

aspects. However, the instances of texture change are not equally

important for all applications than the texture itself. Typically, au-

dio can contain a variety of textures and some of them are often
repeating. Thus, only the texture change instant is not sufficient

for complete characterization of given audio since it lacks the abil-

ity to judge similar textures discontiguous in time. The accurate

identification of characteristic textures is crucial for many applica-
tions like classification, indexing, browsing and summarization. In

this paper, graph spectra and graph eigenclusters are proposed as

a scalable technique for extracting predominant textures or eigen-
textures in a given musical audio and has yielded encouraging re-
sults. This approach not only makes segmentation more tractable

and scalable but also helps in modeling given audio in terms of

graphical structure, which is more perceptually revealing.

1. INTRODUCTION

A challenge to automatic interpretation of audio content is posed

by varied audio contents that might exist in a given audio signal. In

order to classify and analyze the audio content, it would be benefi-
cial to extract predominant textures present in the audio as a front-

end processing stage, and then apply classification and analysis on

these textures rather than on raw audio. Qualitatively classification

accuracy of pre-segmented audio is expected to be more than that
for raw audio, which has to be automatically segmented and then

classified. Thus, segmentation at front end is expected to have ob-

vious advantages. This would be analogous to edge detection in

image processing and object recognition in computer vision.

Different textures within a single audio are expected to have a
varied appealing level to different people. Thus, in a query-by-

example (QBE) system, a query could take form of any of the

present textures. Thus this kind of segmentation in first phase will

enable greater flexibility for audio classification and retrieval sys-

tems like [1]. Moreover, the instances of texture change are not as
important for characterization if each eigen-texture of appropriate

length are obtained for all existing textures. These eigen-textures
could form candidates to complement automatic audio indexing

and browsing.

Tzanetakis [2, 3] proposed mulitfeature audio segmentation
for front end processing of audio. Successive distance calculation

of feature vectors of audio frames and peak picking heuristic was

used for segmentation. For example: consider the hypothetical se-

quences of such distance between successive frames:
�
2, 3, 2, 2,

3, 15, 2, 2, 3, 3, 2, 20, 2, 3, 3, 2 � . Existence of three possible seg-

ments can be inferred, but to ascertain if last segment is similar to

first distance measure alone will fail, and some further processing

would be required. In addition, the nature of peak picking heuristic
impose limitations on detecting the number of segments automat-

ically.

Lu [4, 5] proposed interesting schemes for synthesizing sim-

ilar audio textures and audio texture restoration. Foote [6, 7] has
presented schemes to extract segment boundaries and music sum-

marization. These schemes embed pair wise similarity of audio

frames in a 2-D similarity matrix. Our approach is similar, how-

ever involves establishing of similarity among group of frames and
proposes adjacency matrix (or relation matrix) instead of similar-

ity matrix. We focus on detecting similarity among music textures

in a given audio and extracting the characteristic textures present.

2. SEGMENTATION USING EIGENCLUSTERS

Sarkar [8] has generalized the use of eigenvectors of connectivity

relation matrix for change detection from aerial images. We extend
its use to audio by modeling audio signal as a undirected graph

which is then used for audio segmentation using eigenclusters. The

relationship among audio features could be effectively captured in

form of a relation graph [8], whose nodes represent audio features
over defined temporal range and whose links denote compatibility

between the features. The relevant theory of graph spectra [9] in

context to � � � � � 
 � � � � � � � � is presented next.

2.1. Eigenvalues of Graph

Given a weighted relation graph with adjacency matrix A, the max-
imally cohesive node cluster would correspond to eigenvector cor-

responding to highest eigenvalue of A. Also, eigenvector corre-

sponding to second largest eigenvalue will give a maximally cohe-

sive node cluster which is � � � � � � � � � � to one with highest eigen-

value. This can be generalized at any level (Rayleigh-Ritz theo-
rem). Thus, if nodes in graph consist of features of audio signal

(defined over uniform temporal range) and are linked by weighing

according to degree of similarity, eigenvectors of A constituting

spectrum of graph, provide natural segmentation of audio.

2.2. Eigenclusters

Because of lack of physical interpretation for negative values, only� � � � � � " � eigenvectors have been utilized in this study. An eigen

vector x is said to be positive if all the components of x or -
x are positive and it corresponds to positive eigenvalue. Since
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Fig. 1. Spectogram of synthetic two tone audio.

every node have an implicit temporal range defined, the collec-

tion of nodes corresponding to the positive components of positive
eigenvector constitutes an � � � � � 	 �  � � � � , which is identified as an� � � � � � � � � �  � � .

Consider a synthetic audio file with two tones, � � � � Hz is

sandwiched between � � � � Hz, as shown in Fig. 1. Here the node� represents � �  � � � " to � � � seconds as shown by vertical black

lines. Fig. 2a depicts the graph, which captures similarity among
nodes � # % # ( # ) # * # , and � # - # . . It can be seen that two positive

eigenvectors (Fig. 2) naturally segment the audio into constituent

eigen-textures. The / th entry of an eigenvector captures the con-

tribution of the / th node in that cluster. Moreover, orthogonality
of eigenvectors results in disjoint audio segments. It is worthwhile

to note that eigenvector � , summarizes this synthetic audio since it

represents maximum similarity to whole. Interestingly, Foote [7]

also arrives at similar result but using a similarity matrix.

The audio feature set is used to model audio textures and de-
pending on its effectiveness, the graph will have varying degree of� � 	 1 3 4 5 � � 8 � � links. Thus in practice definition of positive eigen-

vector had to be relaxed to account , * : of energy as dominant

components. Relaxation could to lead to some overlap in the au-

dio segments.

3. SEGMENTATION SCHEME

The scheme can be divided into two stages: pre-segmentation stage

and eigen-texture extraction stage. First, raw audio is broken into

variable length pre-segments, that comprise the nodes of the graph.

This is similar to finding edges in an image. In next stage, these
pre-segments (nodes) are edge-linked whose weights are propor-

tional to a similarity measure. The eigenclusters of adjacency

matrix for this graph yield desired eigen-textures. This general

scheme could find many applications, however novelty lies in find-
ing appropriate pre-segmentation scheme and a similarity measure

for that particular application.

Basic audio features are calculated using 16 msec overlapping

frames with 4 msec overlap on 16KHz audio. Hamming window

is used for windowing. Following audio features were extracted
for each frame. Here � < � > denotes the time domain audio frame of

length ? and @ < A > is corresponding FFT magnitude at frequency

bin A of B such bins.

1. Power: C E F G I J K L M N OP , the RMS power.
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Fig. 2. (a) Graph corresponding to Fig. 1 (b) Adjacency Matrix (c)

Positive Eigen Vectors (small index implies larger eigenvalue).

2. Centroid: d E G g J i k L i NG g J k L i N , a measure of spectral bright-

ness.

3. Rolloff: l such that, m o p @ < A > E � s * - m u p @ < A > , a mea-

sure of spectral shape.

4. ZeroCrossings: w d l , the number of zero crossings of � < � > .
5. Mel Filter Bank Output: 40 mel-scale filters are used to

filter @ < A > resulting in a vector y { .

3.1. Pre-Segmentation Stage

Pre-segmentation is achieved by high pass filtering w d l , } � �  y { "
centroid and fb centroid features, using a sliding window � < � > .

� < � > E � � � � � �  � � � " � � � �� � � � � � � � (1)

Window length ( � ) corresponding to 0.35 sec. is used. Peaks in

resulting signal correspond to a significant long-term change in
feature. Small variations are clipped to zero by applying critical

limit of � s - times mean of absolute valued signal. Resulting peaks

from three features are normalized with their respective maxima

and merged to yield overall change variation. This is done to cap-
ture the changes present in both w d l and the centroid features.

This overall change variation is then post filtered to retain only

the peaks in about 0.7 sec interval thus yielding pre-segments de-

marcated by the peaks. A pre-segment is further sub-divided if it' s
length is greater than % sec. Fig. 3 depicts the pre-segments marked

by vertical black lines for Lagaan's Waltz for a Romance and it can

be observed that important spectral changes are accounted. This

scheme performs well empirically, as it pre-segments the audio
without missing any 	 1 � � � 	 � texture change instances. Also, it

improves the computational efficiency by reducing the no. of sim-

ilarity calculations at pre-segment level as opposed to frame level.

3.2. Extraction of eigen-textures

Similarity measures between pre-segments (4 � and 4 � ) are based

on the audio features. For each pre-segment, upper and lower limit

of power, centroid and rolloff are calculated. Since these similar-
ity measures remain consistent over these features, let variable @
denote the feature. X could be C power, d centroid or l rolloff.

Similarity measures are defined as follows (Fig. 4 depicts expres-

sions used):
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Fig. 3. (a) Pre-Segments for an audio file (Waltz)

1. Overlap Similarity: This measures quantifies the degree of

overlap over the � feature range.

� � � � 	 �  � � � � � � � � � � � ! # % � ' ) + , - / �� � ! � 2 � � � 2 � � � 5 (2)

2. Overlap Strength: This establishes the actual fraction of

content present in this overlap.� � � � 6 7 9 � � � � � � � � � � � ! � ; � � ; � �
(3)

The
; �

and
; �

denote fraction of feature points contained

within the overlapped region, in
� �

and
� �

respectively.

3. Range Similarity: This measure relates the range over which

the feature changes.

� � � > � @ A B � � � � � � � � � % E � � ! # % � G 2 � � E 2 � � G� � ! � 2 � � � 2 � � � 5
(4)

Using the above notations in Eqs. 2, 3 and 4, following simi-

larity measures were employed for the relation linking.

1. Power Similarity Measures:� � � � 	 �  H � � � � � � �
measures the degree of overlap over

the power range and differentiation between a louder pre-
segment from a quiter one is provided by

� � � > � @ A B H � � � � � � �
.

Thus they together serve as an overall power similarity.

2. Spectral Similarity Measures:� � � � 	 �  I � � � � � � �
and

� � � � 6 7 9 I � � � � � � �
are used for

Centroid based similarity measures. Similarly for rolloff,� � � � 	 �  > � � � � � � �
and

� � � � 6 7 9 > � � � � � � �
are used.

An iterative algorithm with following steps was developed to

perform similarity linking (on a scale from K to
%
, with higher

value implying more similarity) of pre-segments by setting link

weight L � � � � � � �
between two pre-segments.

1. For time consecutive pre-segments, a simple auto-correlation

based heuristic is used to find any periodicity in their power
variation. If periodicity is detected, link weight L � � � � � � �
is set to the magnitude of first peak in normalized auto-

correlation plot. This was found to be useful in periodic

music textures like beats.

p
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p
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Overlap

f
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f
j

∆F
i
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j

Fig. 4. Illustrates expressions used for similarity measures

2.
� � � � 	 �  H � � � � � � �

,
� � � > � @ A B H � � � � � � �

,� � � � 	 �  I � � � � � � �
,

� � � � 6 7 9 I � � � � � � �
,� � � � 	 �  > � � � � � � �

and
� � � � 6 7 9 > � � � � � � �

are calculated.

If their minimum (denoted by P � � R � !
) is more than K T %

then next step is carried out, else L � � � � � � �
is set to zero.

3. Rolloff sub-level based correlation: This forms the heart of
the algorithm. The rolloff overlap range of

� �
and

� �
are

divided into fixed length sub-levels (around
% K K Hz). Over

each of the levels the cross correlation between mean of

constituent U V ' s is calculated. Also if any sub-level corre-
sponds to less than W Y K Hz then cross correlation between

only 20 lower frequency bins of U V ' s is calculated. Simi-

larly, above Z T Y kHz only 20 higher frequency bins of U V ' s

are considered. A count is kept for fraction of
� �

and
� �

(de-
noted by [ ; �

and [ ; �
respectively) for which this cross cor-

relation value is more than the threshold \ ] . This threshold

is linearly decreased in steps as the sub-level amplitude in-

creases. The [ ; �
and [ ; �

capture the spectral content that
is similar across

� �
and

� �
. Link weight L � � � � � � �

is calcu-

lated as
� � ! � [ ; � � [ ; � � P � � R � ! �

. This method was found

to be quite efficient in measuring in spectral similarity.

4. Smoothing: If two pre-segments (
� �

and
� �

) are spectrally

similar such that the time difference is less than 2 sec. then

fraction of similarity measure is incremented to the inter-
mediate pre-segments. This step could be ignored or ad-

justed depending on the application.

4. EXPERIMENTS

Audio files (each of
%

min. duration for consistency) represent-

ing variety of texture patterns were experimented with, yielding

quite encouraging results. Eigenvectors and corresponding eigen-
textures for Lagaan's Waltz for a Romance (1 min. clip from begin-

ning), an orchestral piece are shown in Figs. 5 and 6. Eigen-textureb
mainly composed of violin and string instruments, captures main

melody of the song. Eigen-texture
%
, c and Z represents different

sounding transition phases.

The Magical Mystery Tour by The Beatles (1 min. clip from

beginning), yielded the predominant eigen-texture as occurrences

of chorus (”Roll up”). Eigen-texture covered time durations (in
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sec.) � � � � � � � � , � 	 � � � � � � � , � � � � � � � � � , � � � � � � � � � , 	 � � � � 	 � � � ,
	 � � � � 	 � � � , � � � � � � � � � and � � � � � � � . All these durations have

the same high-pitched chorus content.
Robert Miles' Children (dream version) (1 min. clip, 100 sec

from beginning) results in four primary eigen-textures correspond-

ing to piano and techno starting � � � � � & � � � � � � � � � , buiding

beats with slight shrill at � � � � � � � � � , building up the tempo with
beats � � � � � � � � � and finally loud beats in the � � � � � � � segment.

Fig. 7 shows characteristic eigen-textures of a (1 min. clip,

15 sec. from beginning) classical, the Spring (allegro) from Vi-

valdi' s The Four Seasons. Eigen-texture � captures similarity in
opening and closing parts and each eigen-texture has its own fla-

vor distinguishing it from another. Detailed results in addition

to audio files is available on the Web: http://www.eleceng.ohio-
state.edu/ soods/eig-tex/results.htm. Average execution time of
our MATLAB implementation of algorithm on standard Pentium

4 system is about 36 sec. for 60 sec. of audio.

5. CONCLUSIONS

In this paper, we presented use of graph spectra and various simi-

larity measures for extracting characteristic eigen-textures for mu-
sic. Experimental results on popular and classical music have

shown quite encouraging results with perceivably accurate detec-

tion of similar textures. While this approach might not yield an ex-

haustive set of textures exactly according to psychoacoustic prin-

ciples, but it does give satisfactory results by identifying primary
textures. Also current approach cannot characterize textures in

voice only audio. The future research will be directed towards

making it even more effective and diverse. Applications for audio

summarization and browsing using this approach for is also being
explored.
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Fig. 5. Five positive eigenvectors obtained for Lagaan's Waltz
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Fig. 6. Five corresponding eigen-textures (Fig. 5) for Waltz
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Fig. 7. Eigen-textures for Vivaldi' s Spring
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