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ABSTRACT

In this paper, we investigate the problem of automatically 

detecting and tracking a specified person’s singing potions 

within a music recording with multiple simultaneous or non-

simultaneous singers. This problem reflects an important issue in 

multimedia applications which require transcription and 

indexing of music data in response to the increasing demand 

nowadays for content-based information retrieval. The major 

challenges of this study arise from the fact that the singer’s 

voices are inextricably intertwined with the signal of the 

background accompaniment. To determine whether or when an 

accompanied voice is present and from a sought singer, methods 

are presented for separating vocal from non-vocal regions, for 

extracting and modeling singers’ vocal characteristics, and for 

distinguishing among vocal regions performed by the target 

singer and other simultaneous or non-simultaneous singers.  

1. INTRODUCTION 

With the rapid proliferation of popular music on the Internet, the 

need for effectively and efficiently managing the burgeoning 

amount of music materials available digitally everywhere is 

gaining attention. Of particular interest is the problem of 

automatically extracting information from music in order to 

lessen or replace human efforts in documenting music data. 

Much research has been done recently on automatic melody 

extraction [1], instrument recognition [2], music score 

transcription [3], and so on. More recently, advances in this 

research area have made a foray into the extraction of singing 

information from music, such as lyric recognition [4] – decoding 

what is sung, or singer identification [5] – determining who is 

singing. In keeping with this research target, this study addresses 

two further problems resembling the singer identification, Target 

Singer Detection (TSD) and Target Singer Tracking (TST).

The TSD aims to decide whether or not a specified target 

singer is present in a music recording. This task can be viewed 

as a binary classification, in which one class corresponds to the 

music data containing the target singer’s voices, and another to 

the music data entirely performed by some singers other than the 

target one. In our context, only prior information about the target 

singer’s voices is assumed available from his/her solo albums or 

previous recordings, while no information about the vocal 

characteristics is available offline from any specific non-target 

singers. On the other hand, the aim of the TST is to determine 

where in a music recording, if at all, the target singer is singing. 

This task can be viewed as a TSD performed as a function of 

time, and a system built for this task must output a list of regions 

where singing from the sought person has been located. Notice 

that the music in question may be instrumental only, solo, duet, 

or even chorus. However, our efforts in this work are only made 

to investigate the TSD/TST on solo and duet music data, 

because they are the most prevalent types in pop music.  

There are numerous potential applications that TSD/TST 

could be able to create. For instance, they can serve as a tool for 

labeling unlabeled or insufficiently well labeled music 

collections. Since most of currently documented music data is 

only labeled by artist or lead singer, a music archive system may 

require an automatic technique for ascertaining the title and 

identifying those songs or parts of a song not sung by the lead 

singer. For unlabeled music data like live concert recordings, 

TSD/TST could be used to quickly locate a given singer’s 

singing portions or cameo’s appearances. In addition, TSD/TST 

may also enable music companies to rapidly scan suspect 

websites for piracy. Furthermore, TSD/TST may be of great use 

for karaoke services to manage their customers’ recordings and 

provide personalization features.

2. METHOD OVERVIEW 

In attempts to probe the singers involved in a music recording, it 

is necessary to extract, analyze, and compare the characteristic 

features of the singer’s voices without interference from non-

singer features. As a first step toward this end, we present a 

method for segmenting a music recording into vocal and non-

vocal regions, in which a vocal region consists of concurrent 

singing and accompaniment, whereas non-vocal regions consist 

of accompaniment only. Next, a stochastic modeling method is 

presented for distilling the singers’ vocal characteristics from the 

vocal regions. Then, the decision of whether or where a test 

music recording contains the target singer’s voices is made by 

examining the extent of how well the target singer’s model 

matches the test recording.  

In addition to handling the singers’ vocal characteristics, an 

inevitable problem in dealing with multi-singer music data, 

particularly in the TST task, is that multiple singers may perform 

simultaneously, which results in ambiguity of singer attribute. 

We refer to a music segment with multiple simultaneous singers 

as Overlapping Singing (OS). From the standpoints of 

information retrieval, an OS segment must be treated as relevant 

if it contains an inquired singer’s voices. However, many OS 

segments are likely to be discarded, because they are usually 

corrupted severely in terms of the quality of the target singer’s 

voices and thus tend to be identified as non-target. To alleviate 

this problem, an automatic OS detection method is developed, 

which serves as a pre-processor of the TST. After locating the 

OS, the TST can be done by dynamically modifying its decision 

with a preference to hypothesize OS segments as target.  
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3. VOCAL/NON-VOCAL SEGMENTATION 

The basic strategy applied here is to construct a stochastic

classifier for distinguishing vocal from non-vocal regions. This 

classifier consists of a front-end signal processor that converts 

digital waveforms to cepstrum-based feature vectors, followed

by a backend statistical processor that performs modeling and 

matching. It operates in two phases, training and testing. In the 

training phase, a music database with manual vocal/non-vocal

transcriptions is used to create a set of parametric models for 

characterizing the vocal and non-vocal classes. The parametric 

models used here are Gaussian mixture models (GMMs). There

are three GMMs created. The first GMM, denoted as T, is

formed using the labeled vocal regions sung by a specified target 

singer. The second GMM, denoted as V, and the third GMM, 

denoted as N, are, respectively, trained using the labeled vocal 

regions and non-vocal regions of all the music data available. 

Parameters of the GMMs are initialized via k-means clustering

and iteratively adjusted via expectation-maximization (EM) [7].

During testing, the classifier takes as input the T-length feature 

vectors X = {x1, x2, ..., xT} extracted from an unknown recording,

and produces as outputs the frame likelihoods p(xt| T), p(xt| V)

and p(xt| N), 1 t T. Since singing tends to be continuous, 

classification can be made in a segment-by-segment manner. A 

W-length segment is hypothesized as vocal or not using 
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where V is the threshold, and k the segment index.

4. SINGER CHARACTERISTIC MODELING 

Our method for modeling the singers’ voice characteristics 

follows the work of [6,8], in which non-vocal music segments 

are exploited as a prior knowledge of background signal to assist

the estimation of pristine vocal signal. Suppose that an 

accompanied voice V = {v1, v2, ..., vT} is a mixture of a singing 

voice S = {s1, s2, ..., sT} and a background music B = {b1, b2, ..., 

bT}. Both S and B are unobservable, but B’s stochastic 

characteristics can be estimated from the non-vocal segments, 

since in most pop music, substantial similarities exist between 

the accompaniments of singing regions and instrumental-only

regions. Therefore, it is sufficient to build a stochastic model s

for the singing voice S, based on the available information from 

V and B. Toward this end, we further assume that S and B are, 

respectively, drawn randomly and independently according to

GMMs s = {ws,i, s,i, s,i | 1 i I }, and b = {wb,j, b,j, b,j | 1

j J },  where ws,i and wb,j are mixture weights, s,i and b,j

mean vectors, and s,i and b,j covariance matrices. If the signal

V is formed from a generative function vt = f (st, bt), 1 t T,

the probability of V, given s and b can be represented by

,
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To build s, a maximum-likelihood estimation can be made as
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Using the EM algorithm, a new model  is iteratively estimated

by maximizing the auxiliary function 
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where prime denotes vector transpose, and E{ } expectation. The 

details of Eqs. (8)-(10) can be found in [6,8]. Note that if the

number of mixtures in b is zero, then the method above

degenerates to directly modeling the accompanied voices as a 

GMM. This serves as a baseline for performance comparison.

5. TARGET SINGER DETECTION (TSD) 

A block diagram of the proposed TSD system is shown in Fig. 1.

During training, music data from a training set are segmented

into vocal and non-vocal regions. The resulting non-vocal

regions are then used to form a GMM which simulates the

characteristics of the background accompaniments. The back-

ground music GMM together with the segmented vocal regions

are then used to create two singing voice models, the target

singer model and the universal singer model . The target 

singer model is trained using the music recordings fully

performed by the target singer, while the universal singer model 

is trained using all the available music data not performed by the 

target singer. In the testing phase, a background music GMM 

T

s

U

s

b

is created on-line using the segmented non-vocal regions of a 

test recording X. The system then hypothesizes whether or not 

the target singer is present in X using 

,),|(log),|(log TSD

target-non

singertarget

b

U

sVb

T

sV pp XX

 (11) 

where XV denotes all the segmented vocal regions in X, and TSD

is the threshold. 

6. TARGET SINGER TRACKING (TST) 

The TST can be intuitively performed in a similar manner to the 

TSD. Given a test recording, the system hypothesizes whether or 
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not a detected vocal segment is from the target singer by a

comparison of the likelihoods for the target singer model and for 

the universal singer model. However, due to the existence of 

Overlapping Singing (OS), it is found that considerable amounts

of the target singer’s voices with background vocals tend to 

poorly match the target singer model and thus be improperly

judged as non-target. To alleviate this problem, we lower down 

the threshold of hypothesizing a vocal segment as target when

this segment is marked as OS. Specifically, a W-length vocal 

segment is hypothesized as target or not using 
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where  is a positive constant, and TST the global threshold.

To Realize the TST method above, an automatic technique

for detecting the OS is proposed. Our basic strategy is to treat

the OS as the third class other than the target singer and 

universal singer classes. It is assumed that the generic acoustic

characteristics of the OS can be statistically modeled using large 

amounts of music data with simultaneous singers. During

training, an OS model is created through the same training 

method as that of the target and universal singer models. During 

a test, the system hypothesizes each of the segmented vocal 

regions as OS or not using 
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where OSD is the threshold. Implicit in Eq. (13) is the preference 

that a detected OS segment contains the target singer’s voices.
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Figure 1: The proposed target singer detection system.

7. EXPERIMENTAL RESULTS 

Music data used in this study consisted of 242 solo tracks, 34 

duet tracks and 174 instrumental-only tracks from Mandarin pop 

music CDs. All the tracks were manually labeled with singer 

identity and the vocal/non-vocal boundaries. The 242 solo tracks 

were grouped into two subsets by singer, respectively, denoted 

as DB-S-1 and DB-S-2. The DB-S-1 comprised 200 tracks

performed by 10 male and 10 female singers, with 10 distinct 

songs per singer. The DB-S-2 comprised the remaining 42 tracks, 

involving 13 female and 8 male singers, none of whom appeared 

in DB-S-1, and each of the singers performed two distinct songs. 

Furthermore, we divided DB-S-1 into two sub-subsets, one for 

training the singer-specific models, and another for evaluation.

The sub-subset for training, denoted as DB-S-1-T, contained 

eight tracks per singer, while the sub-subset for evaluation, 

denoted as DB-S-1-E, contained two tracks per singer. The

music data in DB-S-2 were used for creating the universal singer

model. On the other hand, 22 among the 34 duet tracks 

encompassed the vocals sung by the singers in DB-S-1, and each 

of the singers in DB-S-1 at least involved in one of these 22 duet 

tracks. We denoted these 22 duet tracks as DB-D-1, and the 

remaining 12 duet tracks as DB-D-2. The DB-D-1 was used for

evaluation, while DB-D-2 was used for training the OS model. 

Additionally, the 174 instrumental-only tracks were used for

training the non-vocal model. All these data were down-sampled 

from the CD sampling rate of 44.1 kHz to 22.05 kHz, to exclude 

the high frequency components beyond the range of normal 

singing voices. Feature vectors, each consisting of 20 Mel-scale

frequency cepstral coefficients, were extracted from these data 

using a 32-ms Hamming-windowed frame with 10-ms shifts. 

Our first experiment was conducted to test the performance

of the vocal/non-vocal segmentation. The test data used here 

were DB-S-1-E and DB-D-1. As with binary decision, 

performance assessment was characterized by two error 

measures, Miss Error Rate (MER) and False Alarm Rate (FAR).

However, in view of the limited precision with which the human 

ear detects vocal/non-vocal changes, all frames that occurred 

within 0.5 seconds of a perceived switch-point were ignored in 

the computation. Fig. 2 shows the vocal/non-vocal segmentation

results reported using the detection error trade-off (DET) plot.

Here, the number of mixtures in GMM T, V, and N, were,

respectively, 32, 32, and 64 (empirically the most accurate 

configuration). We found that an adequate length of analysis

segment was 1.5 sec, which yielded an equal error rate (MER = 

FAR) of 14.6%. This served as a front-end processing result for 

the subsequent experiments. 

Next, we examined the validity of the TSD. The test set 

used here included DB-S-1-E and DB-D-1. The evaluation was 

conducted in a leave-one-out manner, which uses each of the 

singers in DB-S-1 as a target one once at a time and rotating

through all the singers. In addition, each of the tracks in the test 

set was uniformly segmented into three music clips, and the TSD 

was performed on a clip-by-clip basis. In DB-S-1-E there were a 

total of 120 test samples treated as target singer trials and 2280 

test samples treated as non-target singer trials, and in DB-D-1

there were a total of 72 test samples treated as target singer trails

and 1153 test samples treated as non-target singer trials. Fig. 3

shows the TSD results in terms of MER and FAR. Here, the 

number of mixtures used in the target singer, universal singer, 

and background music model were empirically determined to be 

32, 32, and 8, respectively. We can see that TSD in solo music

was much easier than it was in duet music. It is also clear that a 

better TSD performance can be obtained by explicitly exploiting 

prior knowledge of background music. 

Lastly, performance of the TST was evaluated on DB-D-1. 

The target singer set and the model configurations used here 
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were the same as those in the TSD experiments. After discarding 

the frames that occurred within 0.5 seconds of a labeled switch-

point, there were 232746 test frames treated as target trials,

120576 test frames treated as non-target trials, and 160710 test

frames treated as non-vocal trials. Among the 232746 target

trials, 112198 were from the frames purely labeled as target, 

while 120548 were from the OS frames. Fig. 4 shows the TST 

results. The solid line represents the TST performance obtained

without taking into account the 120548 trials from the OS 

frames. Compared to the dashdot line, we can see that the TST 

performance deteriorated significantly after the inclusion of

unmarked OS frames. Further analysis of our results showed that 

when MER = FAR, 80483 among the 120548 trials from the OS

frames were hypothesized as non-target. This result reveals that

a better method for handling the OS is highly desirable. The 

dashed line and dotted line, respectively, represent the TST

results obtained with the pre-processing of the manual OS 

marking and that of the automatic OS detection. The value of

in Eq. (13) was empirically set to be 0.9. The automatic OS 

detection used a 32-mixture OS model and achieved an

empirically best equal error rate of 34.4%. We can see that a 

better TST performance can be obtained by modifying the 

decision rule with respect to the vocals from multiple

simultaneous singers, though the OS detection is far from perfect. 

8. CONCLUSIONS 

This study has examined the feasibility of automatic detection

and location of target singer in a multi-singer music recording.

We have shown that the characteristics of a singer’s voices can 

be extracted from music via vocal segment detection followed

by singing signal modeling. The determination of when and 

whether an accompanied voice is present and from a sought 

singer has been formulated and solved using maximum likeli- 

hood classification and hypothesis testing rules. Furthermore, an 

overlapping singing detection technique has been proposed to

better handle the music with multiple simultaneous singers.
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