
ABSTRACT

A system for musical instrument recognition is introduced. In
contrast to most existing systems, it can identify a solo instrument
even in the presence of an accompanying keyboard instrument or
orchestra. To enable recognition in the presence of a highly
polyphonic background, we use features based solely on the
partials of the target tone. The approach is based on the assumption
that it is possible to extract the most prominent fundamental
frequency and the corresponding harmonic overtone series, and
that these will most often belong to the solo instrument.
Classification is carried out using a Gaussian classifier trained on
examples of monophonic music. Testing our system on
accompanied sonatas and concertos we achieved a recognition rate
of 86% for 5 different instruments, an accuracy comparable to that
of systems limited to monophonic music only.

1. INTRODUCTION

Interest in automatic music processing, and especially in
information extraction from audio files, has grown significantly in
recent years. In this paper we focus on the problem of instrument
recognition from audio data. To know what instruments play in a
musical recording can be useful for tasks related to automatic
music transcription, automatic indexing and music analysis.
Similarly in the growing field of musical information retrieval,
knowledge about the instruments playing could lead to better
results when searching for similar pieces of music (for example,
different pieces played by a flute might be perceived as more
similar to each other than a piece played by a cello). In a ‘query-
by-humming’ context it would allow the user to specify a query
which not only searches for a specific tune, but also specifies the
instrument on which the tune should be played.

Previous work in automatic identification of musical
instruments has mainly focused on monophonic recordings (e.g.
[1], [10], [11]). While good results have been achieved for both
isolated tones and recordings from commercially available
compact discs (CDs), these studies assume that only one
instrument is present at any moment in time. Only very few
researchers have attempted instrument recognition in polyphonic
music (e.g. [3], [7], [8]). These systems were only tested with a
restricted number of simultaneous notes, typically 2 or 3, and
relied on identifying the fundamental frequency (F0) of every tone.
Duets for two melody instruments do exist in a classical repertoire,
but most music is highly polyphonic; even sonatas for solo
instrument are in the vast majority of cases accompanied by a
keyboard instrument. Identifying all F0s in piano music is still an

ongoing challenge, and while some good results have been
achieved (e.g. [13]), it is not realistic to build a system relying on
the identification of all F0s in a typical accompaniment.

In the present study we focus on the problem of instrument
identification for solo instruments accompanied by a keyboard
instrument (piano or cembalo) or a full orchestra.The advantage in
trying to identify only the solo instrument is that it is normally
played louder than the accompaniment, and the corresponding
harmonic series is likely to stand out. The identification of the F0
of the most prominent tone is an easier task than identifying all
other F0s, and some good results have been achieved when
extracting melody lines from complex music [4].

Since the harmonics of the accompanying instrument(s) can
span all frequency regions, cepstral features or features related to
the energy in bandpass filters are unlikely to be able to distinguish
between the target sound, i.e. the solo instrument, and the
background accompaniment. We therefore use acoustic features
based solely on the F0 and harmonics of an instrument sound. 

2. SYSTEM DESCRIPTION

2.1. System Overview

The aim of the present study is to identify the solo instrument in an
accompanied sonata or concerto. No attempt is made to decide
whether the solo instrument is actually present at a particular
moment, or to identify the type of accompaniment. Classification
decisions are therefore made for entire sound files, without trying
to identify instruments on a note by note level.

All processing is based on short, overlapping time frames of
fixed length. For each frame, spectral peaks are extracted and the
most prominent F0 is determined. The peaks belonging to the
harmonic series of the estimated F0 form the basic features to be
used by a Gaussian classifier, which identifies the instrument
(Figure 1).

2.2. F0 Estimation

If necessary, the audio file is first converted to mono by mixing
both channels of the stereo signal. Since most of the examples used
are from commercially available CDs, they have a sampling rate of
44100 Hz, which is retained. The audio file is then divided into
short frames of fixed length, with 50% overlap between successive
frames. Every frame is multiplied with a Hanning window and a
fast Fourier transform (FFT) is computed. To obtain a better
frequency resolution, a highly zero-padded FFT (FFT size 16384)
is used. Further processing is based on spectral peaks only. To
locate peaks, the spectrum is convolved with a differentiated, 50
samples wide Gaussian. As a result the spectrum is smoothed and
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peaks are indicated by zero crossings in the convolution, which are
easy to detect. Once the position of a peak is found, its frequency
is defined by the frequency of the corresponding FFT bin.

The F0 estimation uses an approach based on a frequency-
domain pattern matching technique, related to the so-called
harmonic sieve [14]. A sieve consists of slots representing an ideal
harmonic series, with one sieve for every possible F0. Each sieve
is matched against the pattern of spectral peaks, and the more
peaks coincide with the slots in a sieve, the more likely is the F0
represented by that particular sieve. 

A common problem with this approach is octave confusion. A
sieve half the frequency of the true F0 still captures all spectral
peaks, with odd frequency slots left unmatched. A sieve double the
true F0 has all its slots filled, but misses every other spectral peak.
To solve this problem, a final score based on the power of the
matched spectral peaks and their position within the sieve is
computed. Generally, a F0 is more likely the more peaks it can
account for. Additionally, lower harmonics are more powerful in
most musical instrument tones, therefore a sieve with the strongest
peak in the position of the first or second harmonic should be
favoured over one with the highest peak in the position of e.g. the
10th harmonic. Hence, we use a weighting function based on a
slowly decaying exponential, a heuristically determined measure
that worked well in a number of preliminary studies. The power of
the peaks allocated to a sieve is multiplied with the weighting
function and the results are summed. Specifically, a peak
corresponding to harmonic n (n=1 is the F0, n=2 the first overtone
etc.) of a sieve has weighting w(n) given by:

(1)

The sieve that maximizes the sum of the weighted power of all its
allocated peaks is taken as the most prominent F0 in that time
frame. 

The finer the spacing of the sieves on the frequency axis, the
more exactly the F0 can be estimated. For musical purposes, a
spacing corresponding to halftones is often enough, and saves
significant computing time compared to a finer resolution. Our
sieves are based on the F0s of all notes between C2 and C7,
resulting in 61 sieves equally spaced on a logarithmic scale
between 65 Hz and 2093 Hz. Since mistunings resulting in tones
not coinciding with the F0 of the sieves are always possible, the
frequency interval in which a spectral peak is considered to be a
match to the slot of a sieve is relatively broad (a quartertone), so
that all spectral peaks can be matched to a slot of at least one sieve.

2.3. F0 Restriction 

Preliminary experiments using solo instruments with
accompaniment revealed a common problem with the F0
estimation algorithm. Especially for woodwinds, F0 estimates
were often below the range of the solo instrument. These F0 were
either erroneous or corresponded to an accompanying instrument,

the latter being inevitable in sections where the solo instrument is
silent. Since the classifier was only trained to recognize solo
instruments, but not different forms of accompaniment, these low
F0s could not be used. A fixed frequency threshold, below which
all F0 estimates are ignored, does not work because of the different
pitch range of solo instruments; a piece for cello might only
contain very low F0s. We therefore retained only the highest 50%
of all estimated F0s, a heuristic rule that worked well with all
instruments.

2.4. Acoustic Features

To allow recognition in the presence of a highly polyphonic
background, we use features based solely on harmonics. The
energy of instrument sounds is concentrated in their harmonics,
which are evident as spectral peaks. If the solo instrument is louder
than the accompaniment, as is common for classical sonatas and
concerts, these peaks are likely to stand out in a spectral
representation. While some information will be lost, e.g.
inharmonic noise caused by the excitation method (air blowing
against a hole, friction of a bow against strings), we expect peak-
based features to be a more robust encoding of the solo instrument
in the presence of background accompaniment.

Specifically, we use features based on the first 15 partials of
the most dominant F0 at a given moment in time. Each feature
vector contains 90 elements, including the frequency location and
the normalised, log-compressed power of the spectral peaks
corresponding to the lowest 15 partials. Added to these basic
features are frame to frame differences (deltas) and differences of
differences (delta-deltas) of both frequency and power within
individual tones of a continuous F0. Including the exact frequency
location of the partials allows instrument specific deviations from
an ideal harmonic series to be coded. The relative power of the
partials is likely to be the main source of information to
discriminate among the instruments, being closely related to the
perception of timbre. Delta and delta-deltas code spectral and
amplitudes changes within a tone, most prominent in expressive
gestures such as vibrato.

2.5. Classifier

Gaussian mixture models (GMMs) have been successfully
employed in various classification tasks, including instrument
recognition (e.g. [1], [3], [10]). A GMM models the probability
density function (pdf) of an observed feature vector x by a
multivariate Gaussian mixture density:

(2)

Each of the N individual Gaussian densities Φi (centres) is
characterized by its mean µi, covariance matrix Σi and mixing

partials 220 442 658 ... 60 50 44 ...

∆ +2 -1 +5 ... 0 +5 -3 ...

∆∆ +1 0 -1 ... 0 +3 +1 ...

Figure 1: Schematic of the instrument classification system.
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coefficient pi. Means, covariances and mixing coefficients are
estimated during training. The data points of the training material
are initially clustered using a k-means algorithm with random
initialisation; final parameter values are then estimated using the
expectation-maximisation (EM) algorithm [2].

To make the models as robust as possible, they were trained
on different isolated note sample collections and approximately
one minute each of 4 to 5 different monophonic recordings per
instrument, taken from commercially available CDs. The F0s for
isolated notes were known beforehand; for the monophonic
recordings F0s were estimated by the system.

One model was trained for every possible F0 of every
instrument considered (flute, clarinet, oboe, violin, cello),
resulting in 210 different models. The alternative to training F0-
dependent models would be to train one model for every
instrument, which would result in only 5 models. However,
incorporating F0 dependency can be advantageous for instrument
classification, as the distribution of some features changes with the
F0 [9]. Even a large number of F0-dependent models can be
trained efficiently, since each model converges within very few
iterations; in contrast, models trained over the whole pitch range of
an instrument converge slowly. The recognition phase was also
efficient, since models were restricted to those trained on the F0
detected at that point in time.

3. EVALUATION

The system was assessed on isolated monophonic samples (taken
from the Iowa Musical Instrument Samples [5], the Ircam Studio
Online [6], and the McGill University Master Samples [12]), on
realistic phrases played by a single instrument, and most
importantly on music played by a solo instrument accompanied by
a keyboard instrument or a full orchestra. Both training and test
examples spanned a wide stylistic range from baroque to 20th
century music; no style-dependent differences could be detected in
the results. Training and test material were always taken from
different recordings. Classification decisions were made for each
frame independently and the instrument which accumulated the
most ‘wins’ over the duration of an audio file was taken as the
overall classification for that example.

3.1. Parameter Estimation

A number of free parameters can influence the performance of the
system. The first choice to be made concerns the window length
for the initial signal segmentation. Longer windows allow a more
accurate frequency resolution, but are more likely to include
changing F0s. We tested window lengths of 1024 (23 ms) and
2048 samples (46 ms). All other parameters being the same, a
shorter window length improved results by approximately 5% for
isolated tones and 10% for realistic examples of accompanied solo
instruments. For subsequent experiments, we therefore chose a
window length of 23 ms.

Another choice concerns the covariance matrices of the
GMMs. The matrices can be diagonal, assuming feature
independence, or contain full covariances modelling the
dependencies between the individual entries in the feature vector.
Diagonal covariance matrices are more commonly used, as they
are computationally less expensive (e.g. [1], [3], [10]). Testing our

system using low numbers of centres (1 to 4), GMM-classifiers
with full covariance matrices outperformed those with diagonal
ones by approximately 10% to 20%. Recognition accuracy for
classifiers using diagonal covariance matrices improved with the
use of more centres, and might equal those using full covariance
matrices with a sufficiently high number of centres. But with an
increasing number of centres, more training iterations were needed
for convergence. We therefore decided to use models with full
covariance matrices. Only 1 centre per model was used, as a larger
number of centres did not improve recognition accuracy. This
indicates a very uniform distribution of features for each model,
which is probably due to the fact that one model was trained for
every F0. The classifiers used for further evaluation were therefore
simple Gaussian classifiers, which are a limiting case of equation
(2) for N = 1 and p1 = 1.

3.2. Isolated Samples with Known F0

To asses the performance of the system without the influence of
the F0 detector, we used isolated samples with a known F0. In a
leave-one-out cross-validation scheme [2], models were trained
using the same realistic examples but on only 2 sample collections,
leaving the third one for testing. With classification decisions
made for each tone independently, average recognition accuracy
was 71% for both the McGill and the Ircam samples and 59% for
the Iowa sample collection. A confusion matrix averaging across
the 3 conditions is shown in Table 1.

3.3. Realistic Monophonic Phrases

As a next step towards a more realistic performance we tested the
system on solo music without accompaniment. For every
instrument, 5 short examples (2-10 sec) were taken from different
recordings which were not used during training. The F0s were
estimated by the system, introducing an additional possibility for
errors. Overall recognition accuracy was 84%, both when all F0s
were used and when they were restricted to the highest 50% (see
section 2.3.).

3.4. Solo Instruments with Accompaniment

The main focus of the current application is to identify the solo
instrument in accompanied sonatas and concertos. Overall 90
different examples were used for testing. They were taken from 8
different recordings per instrument, which were not used during
training. Approximately half of the pieces were sonatas for solo
instrument with piano or cembalo accompaniment, the other half
consisted of concertos for solo instrument and orchestra. Since
longer passages without the presence of the solo instrument are

Flute Clarinet Oboe Violin Cello

Flute 76% 9% 3% 12% 1%

Clarinet 16% 64% 9% 8% 2%

Oboe 6% 16% 57% 13% 7%

Violin 5% 1% 5% 71% 18%

Cello 3% 2% 7% 21% 68%

Table 1: Confusion matrix for instrument recognition of isolated 
notes.
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quite common, mainly complete movements (semi-independent
parts of a longer composition) were taken as examples to ensure a
sufficient presence of the solo instrument. To limit computation
time, only the first 3 minutes were taken from very long
movements.

Overall classification accuracy in this task was 86%; a
confusion matrix is shown in Table 2. Accuracy was slightly
higher for sonatas (91%) than for concertos (80%), where a full
orchestra plays in the background. This trend was true for 4 out of
5 instruments, with the oboe being the exception, but it is
premature to say if the difference in accuracy is truly caused by the
form of accompaniment. An orchestra accompaniment could be
more difficult, because all instruments are in fact present and short
solo passages for other than the nominal solo instrument are quite
common.

4. CONCLUSIONS AND FUTURE WORK

The recognition results we obtained are very encouraging: there is
no drop in performance between monophonic examples and music
with accompaniment. Our initial assumption that a peak-based
representation is robust against a highly polyphonic background is
strongly supported by the results. The chosen representation based
solely on the F0 and harmonics of an instrument tone also holds
sufficient information to distinguish reliably among the
instruments. Results for isolated samples are lower than for longer,
realistic examples. This seems to be a common phenomenon ([3],
[11]) and is probably due to the fact that phrases are longer and
more varied, so that isolated, random errors are evened out.

The recognition accuracy of 86% for 5 different instruments
achieved by our system is comparable with other approaches
tested on realistic monophonic phrases, e.g. 82% for 6 instruments
in [11], 70% for 8 instruments in [10], and up to 80% for 4
woodwind instruments in [1]. The main advantage of our system
is that it does not assume a monophonic signal, but achieves
equally high recognition accuracies even when the instrument is
accompanied by a keyboard instrument or a complete orchestra.

Future work will concentrate on formally evaluating and
improving the system for F0 estimation, which is crucial for the
performance of the system. A first estimate of the solo instrument
might be used in an iterative cycle to improve the F0 estimation, as
specific assumptions about the distribution of energy between the
partials can be made. This could result in a more reliable melody
extraction, which would not only allow for a more accurate
instrument identification, but would in itself be a useful
achievement for various automatic music processing tasks.

For a realistic application more instruments have to be
included, as for example both brass instruments and pianos are

common solo instruments in concertos. The latter poses additional
problems, as the piano is itself highly polyphonic, so that the
assumption about a single dominant F0 might not hold true. In
addition it would be desirable to include the singing voice as an
‘instrument’, and perhaps even to identify the singer. This would
be especially useful when processing popular music, which is
often highly dominated by a vocalist. 
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Flute Clarinet Oboe Violin Cello

Flute 75% 0% 0% 25% 0%

Clarinet 6% 88% 0% 6% 0%

Oboe 0% 0% 82% 18% 0%

Violin 0% 0% 0% 88% 12%

Cello 0% 0% 0% 6% 94%

Table 2: Confusion matrix for recognition of the solo instrument 
in accompanied sonatas and concertos.
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