<

PERFORMANCE ANALYSIS OF AN RLS-LMS ALGORITHM FOR LOSSLESS AUDIO
COMPRESSION

D.-Y. Huang

Multimedia Signal Processing Laboratory
Media Division
Institute for Infocomm Research
21, Heng Mui Keng Terrace
Singapore 119316

ABSTRACT

In this paper, we analyze the effect of the input signal cor-
relation on the performance of an RLS-LMS based adaptive
linear prediction algorithm for lossless audio compression.
We show that the mis-adjustment is same for both corre-
lated and uncorrelated input samples. However the variance
of the residual error power of the algorithm increases as the
signal variance increases, which may causes the numerical
instability or stalling problem of the RLS algorithm. For
real audio signals quantized at 16, 24 bit, experimental re-
sults show that the algorithm is capable of modelling au-
dio signals quantized at 16 bit, but it can yield reduced per-
formance coding gain for audio signals quantized at 24 bit,
which confirm our theoretical analysis.

1. INTRODUCTION

Recently, more and more interests are focus on lossless cod-
ing of high quality audio signal as the broadband services
emerge rapidly. Various compression techniques have been
proposed for digital audio waveforms. All of the techniques
remove firstly redundancy from signal and then code the re-
sulting signal with an efficient digital coding scheme.

For bandwidth constraint applications, the compression
ratio is emphasized over complexity. Considering the char-
acterization of audio signals, abundant tonal and harmonic
components and non-stationary, a higher order adaptive FIR
predictor possessing good tracking capabilities is an attrac-
tive candidate for modelling of the audio signal.

There are some research work using adaptive linear pre-
diction for speech prediction [2] and lossless audio cod-
ing [3, 4]. An RLS-LMS based adaptive linear prediction al-
gorithm has been reported in good coding gain, resulting in
a better overall compression performance than some widely
used lossless audio codecs for audio clips sampling at 44.1
kHz and quantized at 16 bit [4]. However, the challenge for
lossless audio coding is that it should provide high compres-
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sion ratio for storage of audio signals at higher resolution
(e.g., 16, 20 and 24 bit) and sampling rates (e.g.,48, 96 and
192 kHz) in MPEG-4 standard. Simulation results shows
that the predictive coding gain of RLS-LMS codec degrades
for audio clips quantized at 20 and 24 bit. Since the perfor-
mance of the RLS is degraded for audio clips quantized at
20, 24 bit, we carried out an analysis of the effect of cor-
related input on the performance of the RLS predictor. It
was shown that the mis-adjustment is same for both cor-
related and uncorrelated input samples. However the vari-
ance of the residual error power of the algorithm increases
as variance of the signal increases. As the output of RLS is
nonstationary in strict sense, its large variance output may
increase the eigenvalues spread of the input to the LMS pre-
dictor, which results in slow convergence and larger residual
error of the whole RLS-LMS predictor.

The organization of paper is as follows. In Section II,
we review RLS-LMS algorithm. In Section III, we study the
effects of input correlation on the performance of the RLS
algorithm. In Section IV, we show the simulation results to
confirm our analysis. Finally, we point out our conclusion
and indicate our future work direction.

2. CASCADED RLS-LMS ALGORITHM

The structure of the cascaded RLS-LMS predictor proposed
in the paper [4] is shown in Fig.1. With 2(n) denoting the
input to the predictor, the residual error u(n) of the RLS
predictor is given by

u(n) = x(n) — w’ (n)x(n) (1)
where T denotes matrix transposition and x(n) = [z(n —
1),z(n — 2), -+ ,x(n — L.s)]T. The filter tap weights

T

w(n) = [wi(n),wa(n), -+ ,wy,. (n)]* is updated using

the RLS algorithm as follows:
Q- 1x(n)
T I A X ()Q(n — Dx(n)

K(n) )
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w(n) =w(n—1)+ K(n)u(n) 3)

and
Qn)=2""'Qn—1) = A'Kn)x' (n)Q(n—-1) @)

where A is a positive value that is slightly smaller than 1
with initialization

Q) = dI,(0<1) ®)
p(n) = 0 (6)

The wu(n) is feed to the LMS predictor to get the prediction
error e(n):

e(n) = u(n) — p* (n)u(n)
where u(n) = [u(n—1),u(n—2),- -+ ,u(n—Lins)]T. Th
filter tap weights p(n) = [p1(n),p2(n), -+ ,p1,,.(n)]|T is

updated using the normalized LMS algorithm:

u(n)

p(n+1) =p(n) + Mme(n)

where 0 < p < 2 is the adaptation step sizes of the LMS
algorithm.

X(n u(n e(n)
f o ;o
RLS LMS
[ ] [ ]

Fig. 1. RLS-LMS predictor.

The RLS-LMS predictor features fast convergence and
successfully modelling of audio signals quantized at 16 bit.
However, its behavior exhibits a degraded performance for
highly colored signal with high resolution. In this paper, we
try to explain the phenomena through the stability analysis
of RLS algorithm with correlated inputs and white noise.

3. STABILITY ANALYSIS OF THE RLS
ALGORITHM WITH CORRELATED INPUTS

In lossless audio compression, the residual error powers are
taken as performance measures: the smaller the residual er-
ror, the higher the coding gain. The stability of the RLS
algorithm can be analyzed through the study the sensitivity
of the RLS algorithm to perturbations in the filter coefficient
from the optimum error power, which involves in expanding
the deviation from the optimum error power due to random
perturbation in the filter coefficient in a Taylor series with
second order partial derivatives since the first order deriva-
tives are zero for the optimal RLS Filter. This method has
been applied to a system identification problem [5] for RLS
algorithm with A = 1. Here we use it to RLS adaptive lin-
ear prediction problem with A < 1. We review the method

firstly, then to develop further for RLS (A < 1) algorithm
and use the results to explain the phenomenon accounted in
the simulations.

Consider the adaptive linear prediction problem of esti-
mating the desired response z(n) by a linear combination
of the current and past input samples z(n) to produce the
residual error u(n) in Eq.1. The vector x,, presents all sam-
ples of z(n) as

X = [z(n),2(n = 1), 2(0)]" )
and the input vector

X, = [2(n), 2(n — 1), 2(0)]" ®)
Define the n x N matrix, Xy

XN,n = [Xnaxn—h e ;Xn—N—i-l] (9)

where

Xn_ 1 = 2X, = [2(n —1),z(n —2),---,z(0)]"  (10)

and 271 is the delay unit. The weight matrix wy ,, can be
used to estimate Z(n) of z(n) by a linear combination of the
current and past input samples. Then the prediction residual
error is

u, =X, — Xy nWyn (11)

We define e (n) - the residual error power of the RLS pre-
dictor as a performance measure,

en(n) =uju, (12)

The optimal RLS filter minimizing the optimum error power
is given by [5]

WN.n :XZXN,n(XJZ\;’nXNA,n)_l (13)

As the first order derivatives of € (n) with respective to the
weight vector are zero for the optimal RLS filter, therefore,
consider the cost function J(w,,ws, - ,wy_1) where
0J/0w; = 0,i = 0,--- ,N — 1. Then, the second order
derivatives due to small perturbations Aw; is

| NZINZT oy
AT~ L AwAwy) (14
TR 5 20 2 (G, I Swibwy) (14

i=0 =0

Assume that the perturbations Aw; are zero mean, indepen-
dent random variables. Hence the mean value E{d.J} is

13202 )
E{AJ} = ;(% o) E{(Aw:)*} £0 - (15)
Define ¢; = (Aw;)? and E{¢;} = &. Thus
13 927
E{AT} =5 ) (G, 1oo)e (16)

=0
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Define E{¢?} = £2, the variance of AJ is [5]

s2 Nl ~1N-1
A= 4 Z loo)? + &2 Z Z 82w |o0)?
3 =0 j=0 v
7)
Assume that e (n) is the performance measure of the op-
timal RLS algorithm, which is minimized, we define the
deviation from ey (n) as there is the value A(n) due to
perturbations:

en(n) =en(n) + Ac(n) (18)

Now we try to derive the mean value and variance of this
deviation from the performance measure since the pertur-
bations are random variables, A(n) is random. From (11)
and (12), we can get

den(n) T
W == QXN,nXN,TL (19)
Define the matrix ®(n)
®(n) = X, Xnn (20)

which determines the sensitivity of the algorithm to pertur-
bation in the weight coefficients. For our adopted RLS al-
gorithm

(b(n) = XJI\;,nXan

=> XN a()a"(@) @1
i=0
For n becomes large, we have
E{z(i)zT (i)} = R, (22)

where R, is the sample autocorrelation matrix. Since A <
1, hence

E{®(n)} = Z N'TIR, = T fe (23)

If 2(n) is a white random process
R, = 0%l (24)

The mean value of the error power deviation due to random
perturbation A;(n) in the weights w;(n) was derived as [5]
for n large, since A < 1:

B{A.(n)} = %Na’az (25)

where ¢ = E[AZ%(n)] and o2 is the variance of the input
samples, [V is the filter order. The variance of the deviation
increases for white signals as

Noiz?

2 _
A =Ty (26)

For correlated signals R,

R.(0) T2 (1) s (N —=1)
(1) 72(0) s (N = 2)
Ry = : : . :
re(N=1) ra(N=2) -« 12(0)
(27)
of which each element r,,(4) is
re(i) = E{z(n)x(n — i)} (28)
The r,(0) is
7.(0) = o2 (29)

It is well known that the scalar function of square matrix R
can be expressed as g(R) such that

SN a
——
i#£]
Since R, is symmetric, from (15), (23) and (30), we have

the mean value of and variance of the deviation from the
performance measure (16) and (17) , respectively

1
E{A.(n)} = ﬁNaﬂ (31)
and
) Note2  aN22 N1 r2(s)
T L (32)
‘ (L=X)? (1=A)?
Noi&2  4ANZ2)\,
< _3 fopi3 n E“Amax (33)

T VERNGISPVE

During the derivation process, the mean of the deviation is
the same for equal power of uncorrelated and correlated sig-
nals Eq.(25) and Eq.(31). From the formula (32), we can see
that the the variance of deviation increases with the variance
of the input J% and A4, the maximum eigenvalue of the in-
put autocorrelation matrix. In order to get lossless audio sig-
nals, the algorithm can be implemented only in fixed point
rather than floating point. On the other hand, the large vari-
ance of the input data may make the stalling phenomenon
occur when the tap weights in the RLS algorithm stop adapt-
ing [1]. This phenomenon occurs when the matrix Q(n) be-
come very small. Consider the correlation matrix ®(n) that
the expectation of ®(n) is given in Eq.(23). For A is close
to 1, we get

E[Q(n)] = B[®~ (n)] ~ (E[e(n)])™" (4
We have, using Eq.(23)in Eq.(34) for large n
ElQ(n)] =~ (1 - MR, (35)

This equation reveals that the RLS algorithm may stall if
the exponential weighting for A is close to 1 and/or the in-
put data variance o2 is large. From these two aspects, it is
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Table 1. The resulting average bitrate in bits/sample for

different lossless codec

Item Monkey 3.97 | RLS-LMS | TUB
Blackandtan 8.67 8.62 8.96
Dcymbals 9.47 9.25 9.83
Fouronsix 7.21 7.15 7.49

Mfv 4.52 4.44 4.85

Unfo 7.95 7.86 8.31

Waltz 8.26 8.16 8.56

easy to explain that the performance of the RLS algorithm
for audio clips quantized at 24 bit degrades compared to 16
bit signals, since the audio signals quantized at 24 bit has
large variance. It leads to the output of the RLS with large
variance, which may increase the eigenvalues spread of in-
puts to the LMS algorithm. The final residual error becomes
large due to the slow convergence of the LMS algorithm.

4. SIMULATION RESULTS

We carried out some experimental work to evaluate the per-
formance of the RLS-LMS predictor. In the first work, we
built up a lossless audio codec to evaluate the practical per-
formance of the RLS-LMS predictor. In this codec, the au-
dio signal in PCM or wav format is segmented into frames
with 4096 samples and then is feed to a cascaded RLS-LMS
predictor to produce the residual error. The residual error is
coded using a Rice code and LZARI algorithm. In the de-
coder, the signal flow chart is reversed to obtain the exact
copy of the original audio signal. We use 6 audio files in
our test, which are stereo, sampled at 48 kHz and quantized
at 16 bit. We compare the compression performance of the
RLS-LMS codec with the state-of-the-art audio codecs of
the Technical University of Berlin (TUB, MPEG-4 RMO)
and Monkey’s audio compression (the benchmark codec)
under their highest compression ratio setting. The results
are given in Table 1. Clearly, the best compression perfor-
mance is achieved by the RLS-LMS codec, which outper-
forms the Monkey’s audio codec with average reduced 0.15
bit/sample in all the music files.

In the second experimental work, we evaluate the pre-
diction gain for audio signals sampled at 48 kHz and quan-
tized at 16, 20, 24 bit respectively. The results are shown
in Table 2. From the table, we observe that the predictive
coding gain of signals decreases as long as the resolution of
signals increases. Our theoretical analysis can give a rea-
sonable and logical explanation.

5. CONCLUSION

This paper analyzes the effect of the correlated input on the
performance of the RLS-LMS predictor for lossless audio

Table 2. The prediction gain of RLS-LMS for different res-
olution audio signals

Track (48 kHz) 16 bit 20 bit 24 bit

RLS-LMS 32.2463 dB | 29.5968 dB | 29.5296 dB

compression. The analysis shows that the mis-adjustment
(steady-state error) is the same for equal power correlated
and white signals. However, the variance of the deviation
increases for correlated signal and signal with large vari-
ance, which may lead to the degraded performance of the
RLS algorithm compared to white signals or signal with
smaller variance. The signals with large variance results
in larger output of the RLS algorithm compared to that with
low variance. It increases the eigenvalues spread of inputs
to the LMS predictor, which results in slow convergence for
high resolution signals. Experimental results of the RLS-
LMS predictor for audio clips at sampling rate 48 kHz and
quantized at 16, 20, 24 bit verified our theoretical analysis.
The performance bound of the RLS-LMS algorithm is un-
der the way of studying.
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