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Abstract

We examine the problem of bit allocation when time-spread and
frequency-spread perceptual distortion criteria are used. For such
measures, standard incremental techniques can fail. Two algo-
rithms are introduced for bit allocation; the first a multi-band ver-
sion of the greedy algorithm, and the second an inverse greedy
algorithm initialized by the bit allocation of a forward algorithm
driven by a non-spread metric. Experimental results show the sec-
ond algorithm outperforms the first.

1 Introduction

A transform coder consists of a set of quantizers q = {qi} acting
on transform coefficients x = {xi} to give quantized coefficients
x̃ = {qi(xi)}. Fidelity is measured with a criterion D(x, x̃) which
is minimized, typically with a bit allocation algorithm, subject to
a rate constraint. A classical example for D is the noise-to-mask
ratio (NMR) distortion, which in one manifestation reads

D(x, x̃) =

(
∑
i

(xi − x̃i)2

Mi

)1/2

, (1)

where {Mi} is the masking threshold.
A few observations are in place. First, the criterion is of the

form D(x, x̃) = ‖x− x̃‖ where ‖ · ‖ is a norm. These types of dis-
tortion functions define metric spaces, and have been well-studied
in information theory. Second, D is a function of the component
distortions: D = F(D1, . . . ,Dn), where Di = (xi − x̃i)2/Mi. In the
case where F is a sum, efficient algorithms exist for finding the
optimal bit allocation minimizing D via dynamic programming or
Lagrangian search [1].

Recently, there has been interest in defining measures directly
in perceptual spaces. These types of distortion functions are of the
form

D(x, x̃) = ‖T (x)−T (x̃)‖, (2)

where T is generally a non-linear, non-invertible mapping from
the transform domain to the perceptual domain. The function (2)
defines a distance between the “internal representations” for the
coded and uncoded signals, bypassing the construction of a noise
signal e = x− x̃, and, compared with (1), offers a more general
approach to modelling psychoacoustical effects [3]. Typical exam-
ples for T include the mapping from spectrum to excitation pattern,
or loudness pattern. In general, such distortion measures are not
weighted Euclidean measures, cannot be decomposed as a function
of component distortions, and do not even define metric spaces on
the set of transform coefficients x.

This paper studies the use of incremental bit allocation algo-
rithms for a distortion measure of the form (2). We highlight the

peculiarities and differences for the rate allocation of (2) as op-
posed to (1), showing that a standard incremental algorithm can
fail to halt when operating in a constant-distortion coding mode.
Moreover, the spreading of frequency components in the mapping
T can lead to very suboptimal solutions.

To combat the halting problem, a multi-band version of the
greedy algorithm is introduced. We also show that under certain
model assumptions for T , an algorithm involving “reverse” incre-
mental allocation may be defined. In essence, a forward incre-
mental algorithm on the transform coefficients x is used as an ini-
tialization for the allocation, and then a reverse incremental algo-
rithm on the spread-domain coefficients T (x) removes redundant
bits. Many perceptual models involve a mapping T that introduces
time-spreading. In this case, a dependent allocation problem arises
across time, in addition to frequency. The reverse allocation algo-
rithm can be extended, under certain model assumptions, to ac-
count for this case, by concatenating another inverse incremental
algorithm driven to remove redundancy in the time-spread percep-
tual coefficients. Experimental results show that the reverse allo-
cation algorithm significantly outperforms the multi-band greedy
algorithm under a distortion target imposed on time-spread excita-
tion patterns.

2 Framework
2.1 Constant Distortion Coding

A frame-based audio coder operating under a constant distortion
target solves the following optimization problem for every block
of incoming data: minimize the rate R subject to the distortion
constraint D(x, x̃) < K. This mode of operation is useful for a va-
riety of reasons. First, transparent coding can be expressed as a
constant-distortion criterion: D(x, x̃) = K0 for some threshold K0.
Second, a qualitative understanding of supra-threshold distortion
incurred from using a particular psychoacoustic model can only be
evaluated subjectively when every frame is coded to the same dis-
tortion. Third, a distortion-constrained scheme can form the kernel
for a rate-constrained scheme. In particular, a constant-distortion
engine can find a relative allocation of bits bi, while an outer al-
gorithm adjusts the absolute sizes of bi to meet the rate constraint.
This process occurs in the MPEG coding standard, for example,
where the inner loop adjusts the relative step-sizes of the quantiz-
ers qi to meet a distortion constraint (masking threshold), while an
outer loop varies a global gain factor to meet the rate target. We
assume the constant-distortion framework for the remainder of the
paper.

2.2 Perceptual variables

One of the most successful concepts in psychoacoustics, exci-
tation patterns provide a unified way of accounting for a dis-
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parate range of auditory phenomena, including loudness, masking,
just-noticeable changes in amplitude and frequency, and absolute
threshold of hearing, to name a few. We shall take them as funda-
mental perceptual variables. The mapping T from power spectrum
to excitation can be broadly summarised in the steps (1) point-
wise transformation on the power spectrum (2) frequency spread-
ing, and (3) time spreading.

In what follows, we assume the following generic model: (1) the
transformation between the transform coefficient xi and the pattern
Bi just prior to frequency spreading is given by a pointwise map-
ping Bi = gi(xi), and (2) frequency spreading is performed in a p-
power law domain, so that the excitation variables Ei at frequency
i are produced by

Ei =
(
αi1B

p
1 + · · ·+αinB

p
n
)1/p

. (3)

The subject of additional time-spreading is taken up in Section 3.3.
Our procedure is consistent with a number of excitation models,
including the ones of [2] and [5].

2.3 Distortion Function

Having selected the perceptual variables, a distortion function
must be chosen. For simplicity of discourse, we will work with
the function

Di = 10log10

(
Ẽi

Ei

)
D = max

i
|Di|. (4)

with Ei and Ẽi the excitation patterns corresponding to the unquan-
tized and quantized transform coefficients x and x̃ respectively. We
call Di the distortion pattern. This definition falls into the class (2),
and is a very natural measure, since the theory of just-noticeable
differences can be formulated with it. In particular, Zwicker’s cri-
terion [2] states that two excitation patterns are perceptually indis-
tinguishable if D < 1 (dB). Note, however, many of the subsequent
results and observations, in particular the theorems of Section 3.2
will still hold if the logarithmic function is replaced with an in-
creasing compressive nonlinearity g.

3 Incremental Allocation Algorithms
Consider the problem of achieving the distortion constraint
D(x, x̃) < K with minimum rate. One method is to use the so-
called greedy algorithm, which, beginning with an initial distribu-
tion of zero, allocates one additional bit to the component resulting
in the largest decrease in D at each iteration. In general, it is pos-
sible that the distortion will not change or actually increase with
every possible test allocation. In such a case, the test quantum is
incremented to two bits, three bits, and so forth, until one such
allocation achieves a decrease in distortion. The procedure contin-
ues until the distortion target K is met.

Now, suppose that the fidelity criterion is of the form D =
F(D1, . . . ,Dn) for a function F increasing in each dimension, and
where the individual distortions Di are metrics on (xi, x̃i). If the
rate-distortion pairs (bi,Di) are such that Di → 0 as bi → ∞, then
it is easy to see that, at each iteration, there exists a band i for
which the allocation increase bi = bi +n decreases D, for some n.
This is because Di decreases for large enough bi and hence D de-
creases for that choice as well. The greedy algorithm, for this case,
produces a monotonic decrease in distortion at every iteration.

The above discussion applies, in particular, to the NMR distor-
tion function of (1). The function F = ∑i D

2
i /Mi is an increasing

function in each of the individual error differences Di ≡ |xi − x̃i|.
A well-designed sequence of quantizers qi,b is one for which
limb→∞ qi,b(x) = x, which ensures that Di → 0 as bi → ∞.

Consider now the application of the greedy algorithm to the dis-
tortion function of (4). The presence of the spreading function (3)
makes it impossible for the distortion D to be written as any func-
tion of component distortions Di(xi, x̃i). Another way of stating
this is that the excitation distortion pattern D in band i is not only
a function of the quantizer qi, but the quantizers in the vicinity of
band i. In general, the allocation of an extra bit to a single band
will have effects on the distortion pattern D of multiple bands.

As an example, consider a bit allocation which reaches the ex-
citation distortion pattern D of Fig. 1. In this scenario, the dis-
tortion is negligible in all bands except for two adjacent bands n
and n+1. From the graph, it is clear that the transform coefficient
corresponding to band n is quantized to a value with larger excita-
tion strength than the original, while the coefficient of band n+ 1
is quantized to a value with smaller power than the original. Now,
if the reconstructed coefficient in band n is improved (in any met-
rical sense), then the excitation distortion in band n reduces — but
because of spreading, the power leaking into band n + 1 also re-
duces, increasing the distortion in band n+1. Alternatively, if the
reconstructed coefficient in band n+1 is improved, then the power
of band n+ 1 increases, leading to a decrease in distortion in that
band, but an increase in distortion for band n. Thus the incremen-
tal algorithm experiences a deadlock: no improvement in overall
distortion results from an allocation to either band n or n+1. The
consequences can be two-fold: (1) allocation eventually occurs in
a region of non-interest, such as a band with negligible distortion,
leading to extremely sub-optimal solutions, or (2) the algorithm
enters an infinite loop, in the case that no allocation leads to a de-
crease in overall distortion.

Band n Band n+1D
is

to
rt
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n 

P
at

te
rn

0

Fig. 1 Deadlock

The above situation, though seemingly factitious, arises in ap-
proximate form sufficiently often in practice to give qualitatively
similar outcomes. It is not dependent upon the particular form of
the distortion function (4), but rather a general outcome of spread-
domain operation. For example, though exacerbated by the pres-
ence of the maxi | · | function of (4), deadlock can still occur even
when the operator is exchanged with the more general integrative
function (∑i | · |p)1/p.

3.1 Multi-band Greedy Algorithm

We have seen that spread domain distortion functions pose serious
problems for the standard greedy algorithm. The crux of the issue
involves the frequency spreading which no longer confines local
quantization error within the band. An incremental algorithm im-
proving single bands at each iteration can fail to halt. This immedi-
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ately suggests, however, that a multi-band version of the foregoing
algorithm, allowing for the simultaneous update of multiple quan-
tizers, might avoid these pitfalls.

The introduction of multi-band allocation introduces a large
complexity increase. There are in general

(n
k

)
ways to select k

quantizers out of a set of n. The complexity increase becomes
tolerable, however, by observing that the spreading function
decreases monotonically at an exponential rate from its maximum.
Changes in the quantization of a single band only affect a con-
tiguous group of bands. By allowing only updates to contiguous
groups, the number of test allocations is constrained considerably,
to n− k+1. An algorithm description follows.

Algorithm 1: Multi-band Greedy
The bit distribution is initialized to zero. The following parameters
are introduced: a mandatory improvement factor at each iteration
β < 1, and an upper integer bound η > 0 on the size of the alloca-
tion quantum before increasing the band-range. At each iteration,
a bit is allocated to the quantizer producing the largest decrease
in overall distortion D. If the distortion does not decrease by at
least the factor β with any such allocation, the search is repeated
with the test quantum increased to two bits, three bits, and so
forth, up to a maximum of η bits. Should no such allocation still
produce the desired distortion, the entire procedure is repeated
with the test quantum reset to one, except contiguous groups of
two bands are tested simultaneously. If the target decrease is still
not reached, groups of three, four etc. are tested, up to, if required,
a simultaneous refinement in all quantizers. Once the mandatory
distortion reduction β is achieved, the algorithm proceeds with the
next iteration, continuing until the final target K is attained.

As stated, this multi-band algorithm will terminate not only
with the distortion function of (4), but more generally with the
criterion D = ‖T (x)− T (x̃)‖. The allocation procedure is guar-
anteed to decrease the distortion by the factor β every iteration,
since, in the worst case, all n bands can be simultaneously refined
so that ∑i |xi − x̃i| < δ for large enough bi. Both the excitation
transformation T and the norm are continuous in the metric
∑i |xi − yi| for finite-dimensional spaces, implying then D < ε
for any ε > 0 with sufficiently large bi. Finally, we note that the
single-band greedy algorithm is a special case of the multi-band
algorithm in the limits β → 1 and η → ∞.

3.2 Reverse Allocation Algorithm

An interesting bit allocation algorithm can be derived by restrict-
ing attention to (4). To develop the algorithm, first consider the
following ostensibly unrelated lemma.

Lemma 1 Let α1,α2,β1,β2 be positive real numbers. Then the
following holds:

min

{
α1

α2
,

β1

β2

}
≤ α1 +β1

α2 +β2
≤ max

{
α1

α2
,

β1

β2

}
(5)

Proof: We will only show the case where α1
α2

≤ β1
β2

; the reverse
case has an identical proof because of symmetry. In this scenario,
the right inequality holds if and only if β2(α1 +β1)≤ β1(α2 +β2),
which holds if and only if α1β2 ≤ β1α2, which is true. The left
inequality holds if and only if α1(α2 +β2)≤ α2(α1 +β1), holding
if and only if β2α1 ≤ β1α2; true of course, hence we are done.

The lemma’s usefulness comes in the proof for Theorems 1 and 2.

Theorem 1 Let αi, Bi, B̃i, i = 1 . . .n be three sequences of positive
real numbers. Let K and p be positive real numbers, and suppose
that

10−K/10 <
Bi

B̃i
< 10K/10 (6)

for every i. Then the following holds:

10−K/10 <

(
α1B

p
1 + · · ·+αnB

p
n

α1B̃
p
1 + · · ·αnB̃

p
n

)1/p

< 10K/10 (7)

Proof: The case n = 1 is trivial. For n = 2, assume that B1
B̃1

< B2
B̃2

with no loss of generality. By Lemma 1, we have:(
B1

B̃1

)p

<

(
α1B

p
1 +α2B

p
2

α1B̃
p
1 +α2B̃

p
2

)
<

(
B2

B̃2

)p

(8)

10−Kp/10 <

(
α1B

p
1 +α2B

p
2

α1B̃
p
1 +α2B̃

p
2

)
< 10Kp/10 (9)

as desired. An induction argument generalises the result to all n.
The above theorem can be interpreted as follows: the Bi’s are the

values of the unspread perceptual pattern used as an argument in
(3), and the numerator and denominator of (7) represent spread ex-
citation patterns in the power domain p of the original and coded
signals, respectively. The bounds of (6) are equivalent to the re-
quirement that

D′ = max
i

|10log10(Bi/B̃i)| < K (10)

or, expressed in words, that the unspread reference and reproduced
patterns are within K dB of another. The theorem then states that
reference and reproduced excitation patterns are also within K dB
of another.

Thus matching the unspread patterns to within K dB, suffices
to match the respective (spread) excitations to within K dB. The
key point is that the Bi’s are obtained by a simple pointwise
mapping gi(·) on the transform coefficients, and hence the
distortion function of (10) is not in a spread domain. The standard
single-band greedy algorithm can then be expected to find a
reasonable solution. Once the target of (10) is achieved, the
excitation distortion of (4) is automatically bounded by K. In
general, the patterns will tend to overshoot the bound: they
will be over-coded. They will not be over-coded a great deal,
however, since the bounds of (9) will be achieved by some frames.
An inverse incremental algorithm can then proceed to perform
a correction: redundant bits are removed until the excitation
distortion just meets the constraint K. The foregoing can be
summarised as follows:

Algorithm 2: Reverse Allocation
Initialize the bit distribution to zero. A standard greedy algorithm
allocates bits driven by the distortion function and the target
of (10). When the algorithm terminates, the final bit allocation
is used as an initialization for the reverse algorithm. At each
iteration, the bit is removed from the quantizer which results in
the smallest updated excitation distortion, as computed by (4).
The process continues until the constraint D < K is first breached;
the last allocation for which the target is achieved is retained.

It is important to observe that though a single-band incre-
mental algorithm driven by a spread distortion function is used
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for the removal of bits, it does not suffer from the same issues
as a forward algorithm. For instance, the halting problem does
not occur here since a decrease in distortion in the reverse
allocation—though generally unexpected—is a positive result,
whereas a generally unexpected increase in distortion in the
forward algorithm is a negative outcome. Indeed, the reversal of
priorities in the inverse algorithm can transform the weaknesses
of the forward greedy algorithm into strengths in the reverse case.

3.3 Extension to Time Spreading

The inverse incremental algorithm has the interpretation of remov-
ing the bits from components which are partially masked by ad-
jacent frequency components, as a result of the spreading. It is
natural to ask whether an analogous result to Theorem 1 can be
obtained for temporal masking, as expressed by time spreading. It
turns out that this is possible.

To begin, we will assume that the time-spread excitation pat-
tern Fn(i) at frequency i and time n is given by the time-varying
autoregressive system

Fn(i) = an(i)Fn−1(i)+bn(i)En(i), (11)

where En(i) is the non-time-spread excitation, and parameters
an(i),bn(i) ≥ 0. The equation generalises a number of models for
time-smearing, among them [4]. Now we have the following the-
orem.

Theorem 2 Suppose that

10−K/10 <
Fn−1(i)
F̃n−1(i)

< 10K/10, (12)

10−K/10 <
En(i)
Ẽn(i)

< 10K/10 (13)

for all i. Then the following holds:

10−K/10 <
Fn(i)
F̃n(i)

< 10K/10, ∀i (14)

Proof: The model (11) implies
Fn(i)
F̃n(i)

=
an(i)Fn−1(i)+bn(i)En(i)
an(i)F̃n−1(i)+bn(i)Ẽn(i)

. (15)

The statement is then immediate by Lemma 1.
This proposition is a time-domain version of Theorem 1. In

particular, with the initial conditions F−1(i) = F̃−1(i) = 0, we have
by induction the corollary that matching the non-time-smeared
patterns Ei, Ẽi to within K dB suffices to automatically bring the
time-smeared patterns F(i), F̃(i) to within K dB. This suggests
that an algorithm for finding an allocation satisfying distortion
constraints on patterns spread in both frequency and time can be
formulated as follows:

Algorithm 3: Reverse Allocation for Frequency and Time-
Spread Patterns
For each frame n, use Algorithm 2 to determine a bit allocation to
be used as an initialization. Since the non-time-spread excitations
are now within the distortion constraint, so must the time-spread
excitations, given that the previous frame’s time-spread excitations
satisfy (12). A second inverse greedy algorithm removes redun-
dant bits, driven by the distortion function of (4) with variables
Ei, Ẽi replaced by the time-spread counterparts F(i), F̃(i). The
procedure continues until the target is just achieved. Now the
bounds of (12) are satisfied for frame n, which prepares the
algorithm for the next time frame n+1.

4 Simulation Results
The relative performance of the algorithms presented above can be
evaluated by applying each to a constrained-distortion audio coder
and computing the respective rates. We use a transform coder with
scalar quantizers in the discrete Fourier domain, structurally simi-
lar to the one presented in [6]. A single bit quantum is associated
with an increase or decrease of quantizer step-size by the factor
0.9. The procedure of [4], with small variations, is used to com-
pute the time-spread excitation patterns on a resolution of 1 Bark.
Bit allocation algorithms 1 and 3 are applied to each frame of data
with the aim of meeting the distortion constraint of (14); or equiv-
alently, to match the time-spread excitation patterns to within K
dB using a minimum number of bits. For the multi-band greedy
algorithm, some tuning of the parameters β and η are required; we
found a good operating point at β = 0.999 and η = 3.

The output is constant-distortion file (in the sense of Sec. 2.1),
with a different rate for each frame. Overall performance is mea-
sured by computing the empirical entropy of each quantizer output
across time, and then averaging over all frequency bands. The re-
sulting rate-distortion curves, with the distortion target K swept
from 1 dB to 10 dB, are plotted in Fig. 2 for a test sample of 4
speech utterances.
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Fig. 2 Empirical Entropy vs. Target Distortion

These curves demonstrate that, for all target distortion values,
the reverse allocation algorithm finds a bit distribution meeting the
distortion constraint at approximately half the rate of the multi-
band incremental algorithm.
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