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ABSTRACT

In this article we introduce multi-variate block polar quantization
(MBPQ). MBPQ minimizes a weighted distortion for a set of com-
plex variables representing one block of a signal under a resolution
constraint for the entire block. MBPQ allows for different proba-
bility distributions in different dimensions of the set of complex
variables. It outperforms an earlier introduced block polar quan-
tizer and unrestricted polar quantization (UPQ) both for Gaussian
complex variables and for sinusoids found from audio data. In the
case of audio data we found a performance gain of about 2.5 dB
over the best performing conventional resolution-constrained polar
quantization (UPQ).

1. INTRODUCTION

In a previous paper [1] we introduced block polar quantization
(BPQ) where we considered the scalar quantization of the ampli-
tudes and phases of a block of L sinusoids, representing a speech
or audio segment of N sample length. The amplitude and phase
probability density function (PDF) was assumed to be identical
for all L sinusoids. In this paper we extend the BPQ method to the
case where the amplitudes of all L sinusoids have different PDFs
and refer to this method as multi-variate BPQ (MBPQ).

Quantization of the amplitudes and phases of complex variables
(polar quantization) has found wide attention, e.g, [2–4]. One
application often named is the quantization of coefficients from
Fourier transforms of signals and images. Within speech and audio
coding polar quantization is used in sinusoidal coding, e.g., [5, 6].

Polar quantization allows for easy facilitation of weights in the
squared error criterion to account for perceptual effects. Vector
quantization, which also allows weighted squared error criteria,
requires search and training algorithms that impose a considerable
computational effort for the high rates and dimensions typical in
audio coding. On the other hand spherical quantizers, e.g., [3, 7]
have been reported to outperform classical polar quantizers while
maintaining low complexity. However, weighting that accounts
for perceptual effects is not incorporated in these quantizers. Our
results show that MBPQ outperforms other polar quantizers that
easily facilitate weighting, making it an attractive quantization
method in speech and audio coding.

Given a resolution constraint (a fixed bit allocation for each sig-
nal block) with a rate budget of B bits for all L amplitudes and
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phases, MBPQ minimizes the weighted distortion measure

D = E

[
1

L

L∑
l=1

wl

∣∣al exp(jφl) − âl exp(jφ̂l)
∣∣2] , (1)

where E[·] denotes expectation, wl, al, and φl are the weight, am-
plitude, and phase of sinusoid l, respectively, the symbol ˆ indi-
cates that the variables are quantized. Commonly the L complex
variables represent a signal block of N samples, where L < N . In
contrast to previous polar quantization methods, e.g., [3], MBPQ
adapts the phase quantizers to all amplitudes observed in a block.
Thus, it takes advantage of the fact that all L coefficients of a block
are available to the quantizer. The weights wl that make the distor-
tion measure in eq. 1 perceptually meaningful can, e.g, be based
on the inverse of the masking threshold. For an entropy constraint
(the rate for the signal blocks varies but the average rate is fixed)
this problem was earlier solved in [8].

We find that MBPQ outperforms BPQ and multi-variate unre-
stricted polar quantization (MUPQ) (an extension of UPQ, e.g.,
[3]). In UPQ the resolution of the phase quantizer in dimension
l is a function of al. For resolution-constrained UPQ phase and
amplitude are encoded with a shared index. Despite the fact that
MBPQ is only asymptotically optimal, it provides good perfor-
mance at practical rates. More-over the asymptotic predictions of
the distortion-rate relations are useful at practical rates.

2. MULTI-VARIATE BLOCK POLAR QUANTIZATION

In this section we derive the expressions for the optimal ampli-
tude and phase quantizers and the distortion-rate relationship of
MBPQ. We assume the amplitudes of the L complex components
representing a block of N data samples to be independent, and to
have PDF fAl(a) in dimension l. The phases are assumed to be
independent identically uniformly distributed. The L amplitudes
are quantized and transmitted first, and afterwards the phase quan-
tizers in all dimensions are adapted to the observed amplitudes.

With d(al, φl, âl, φ̂l) =
∣∣al exp(jφl) − âl exp(jφ̂l)

∣∣2 = a2
l +

â2
l − 2alâl cos(φl − φ̂l), the average distortion in one given quan-

tization cell, bounded between akl and akl + ∆a
kl

and φil and

φil + ∆φ
il

is

D(âkl , φ̂il , ∆
a
kl

, ∆φ
il
) = (2)∫ akl

+∆a
kl

a=akl

∫ φil
+∆

φ
il

φ=φil
fAl(a)d(a, âkl , φ, φ̂il)dadφ

∫ akl
+∆a

kl
a=akl

∫ φil
+∆

φ
il

φ=φil
fAl(a)dadφ

,
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where âkl is the k-th amplitude reconstruction point and φ̂il is the
i-th phase reconstruction point in dimension l.

In the high-rate case, we approximate fAl(a) ≈ fAl(âkl)
within amplitude cell kl. Further, we assume the reconstruction
points âkl and φ̂il to be the mid-points of the quantization inter-
vals [akl , akl + ∆a

kl
) and [φil , φil + ∆φ

il
), respectively. In this

case eq. 2 becomes independent of φ̂il :

D(âkl , ∆
a
kl

, ∆φ
il
) =

(∆a
kl

)2

12
+ 2â2

kl
− 4â2

kl

sin

(
∆

φ
il
2

)
∆φ

il

. (3)

Next we introduce the reconstruction point densities gAl(a) and
gΦl(â), which are the inverse of the quantization cell sizes ∆a

kl

and ∆φ
il

. The phase reconstruction point density is a function of all

quantized amplitudes â = (âk1 , . . . , âkL)T . The independence of
gΦl(â) from φl results from the uniform PDF of φl. The average
distortion in a given cell becomes

D(âkl , gAl(âkl), gΦl(â)) =

g−2
Al

(âkl)

12
+ 2â2

kl
− 4â2

kl

sin

(
g−1
Φl

(â)

2

)
g−1
Φl

(â)
. (4)

For high rates, we approximate the total distortion of MBPQ
(DMBPQ ) using eqs. 4 and 1:

DMBPQ ≈ 1

L

L∑
l=1

wl

[∫ ∞

a=0

fAl(a)

(
g−2

Al
(a)

12
+ 2a2

)
da−

4

∫ ∞

a=0

L∏
i=1

fAi(ai)a
2
l sin

(
g−1
Φl

(a)

2

)
gΦl(a)da

]
. (5)

In the next sections the distortion DMBPQ is minimized under
the constraint that we use a total of B = BA + BΦ bits to rep-
resent all L complex components. The amplitude and phase are
represented by BA and BΦ bits respectively.

2.1. Amplitude reconstruction point densities

We start with observing that for a given gAl(a)

2BAl =

∫ ∞

a=0

gAl(a)da (6)

is equal to the number of amplitude reconstruction points in dimen-
sion l, where BAl denotes the amplitude rate budget in dimension
l. Using the method of Lagrange multipliers we find the gAl(a)
minimizing eq. 5 for a given BAl :

gAl(a) = f
1/3
Al

(a)2BAl
1∫

a′ f
1/3
Al

(a′)da′
. (7)

Inserting eq. 7 in eq. 5 and putting a constraint on the over-
all amplitude rate budget BA =

∑L

l=1
BAl the individual BAl

minimizing eq. 5 are given by

2BAl =
2BA/L√wl

√
w̄

∏L

n=1

(∫
a

f
1/3
An

(a)da
)3/(2L)

(∫
a

f
1/3
Al

(a)da

) 3
2

,

(8)

where w̄ =
∏L

n=1
w

1/L
n is the geometric mean of the weights. In

case fAl(a) is equal for all l we find that eqs. 8 and 7 combine
to [1, eq. 13], i.e., MBPQ reduces to BPQ.

2.2. Phase reconstruction point densities

By the time the phase is to be quantized, the quantized amplitudes
â are known. Given â, the average distortion D(â) is found using
eq. 4:

D(â) = (9)

1

L

L∑
l=1

wl

⎛
⎜⎜⎝g−2

Al
(âkl)

12
+ 2â2

kl
− 4â2

kl

sin

(
g−1
Φl

(â)

2

)
g−1
Φl

(â)

⎞
⎟⎟⎠ .

Since 2πgΦl(â) is the number of phase reconstruction points for
dimension l, we find gΦl(â) minimizing D(â) under the constraint

BΦ =

L∑
l=1

log2 (2πgΦl(â)) . (10)

Using the method of Lagrange multipliers we find

gΦl(â) =

√
wl

w̄

âkl2
BΦ/L

2π
∏L

n=1
â
1/L
kn

. (11)

The phase quantizers gΦl(â) have to be found for each transmitted
set of amplitudes. Thus, eq. 11 represents the (only) computa-
tional overhead in MBPQ compared to conventional polar quan-
tizers, e.g., [3].

2.3. Distortion-rate relation

Using the results for BAl of eq. 8 in gAl(a) of eq. 7 together with
gΦl(â) in eq. 11 in the expression for the distortion given by eq. 5
we find

DMBPQ =
b

22BA/L
+

c

22BΦ/L
, (12)

where we defined

b =
w̄

12

L∏
l=1

(∫
a

f
1/3
Al

(a)da

) 3
L

,

c =
π2w̄

3

L∏
l=1

∫
a

fAl(a)a2/Lda,

which are independent of the rate, and where we used the approx-
imation sin(x−1/2)x ≈ 1/2 − x−2/48 for large x.

To find the optimal amplitude rate BA and phase rate BΦ for a
given total rate budget B = BA + BΦ we denote BA = αB and
BΦ = (1−α)B. Inserting BA = αB and BΦ = (1−α)B in eq.
12 the α minimizing eq. 12 is independent of the weights:

α =
1

2
+

L

4B
log2

(
b

c

)
. (13)

With this α the distortion-rate relation becomes

DMBPQ =
2

2B/L

√
bc . (14)

Since DMBPQ ∼ 2−B/L the distortion reduces by 3 dB when
B/L is increased by 1 bit.
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Fig. 1. Results for Gaussian data. Upper graph: Distortion ratios
DBPQ/DMBPQ , DMUPQ/DMBPQ (code = observed distortions,
theo = predicted distortions). Ratios greater 0 dB indicate that
MBPQ is superior. Lower graph: Ratio observed and predicted
distortions for MBPQ, MUPQ, and BPQ. A value greater 0 dB
indicates that more distortion is observed than predicted.

3. GAUSSIAN DATA
In the literature the performance of polar quantization is often con-
sidered for the case that the real and imaginary parts of all complex
components are independent Gaussian variables. This does not
only lead to simple expressions but also has practical significance
as argued, e.g., in [2]. The Gaussian distribution of the complex
components makes the amplitudes Rayleigh distributed while the
phases are uniformly distributed.

When the variance of the real and imaginary parts of the com-
plex component in dimension l is σ2

l the constants b and c become

b =
3

8
w̄ Γ3

(
2

3

) L∏
l=1

σ
2/L
l , (15)

c =
2π2

3
w̄ ΓL

(
1

L
+ 1

) L∏
l=1

σ
2/L
l . (16)

As shown in, e.g., [1] unrestricted polar quantization (UPQ) [3]
is a particular efficient form of polar quantization. Thus, we com-
pare MBPQ to UPQ. In addition, we compare MBPQ and BPQ.

In resolution-constrained UPQ there is no separate quantization
index for amplitude and phase and thus, it is not possible to trans-
mit the amplitude independent of the phase. That again means it
is not possible to optimize the phase density for all amplitudes ob-
served in the current signal block. However, it is possible to opti-
mize the UPQ in each dimension for the fAl(a) in that dimension.
In addition the rate budget for individual dimensions is optimized.
We denote this as MUPQ. The overall MUPQ distortion becomes

DMUPQ =
1

L

L∑
l=1

DUPQl

=
πw̄

3 · 2B/L

L∏
l=1

(∫
a

a1/2f
1/2
Al

(a)da

) 2
L

, (17)

where DUPQl is the UPQ distortion in dimension l as given1 in [3,

1In [3] DUPQ is normalized differently, which introduces a factor 2
compared to the normalization this article uses.

eq. 1]. For the Gaussian case we find

DMUPQ =
4πw̄

3 · 2B/L

L∏
l=1

σ
2/L
l . (18)

We find the ratio of DMUPQ and DMBPQ as

DMUPQ

DMBPQ
=

4

3
Γ−3/2

(
2

3

)
Γ−L/2

(
1

L
+ 1

)
, (19)

by combining eqs. 15, 16, 14, and 18. If eq. 19 results in
values larger than unity, MBPQ outperforms MUPQ. Eq. 19 is
independent of the variances σ2

l and the rate B and it is equal
to [1, eq. 29]. Thus, the results for the performance ratio be-
tween UPQ and BPQ found in [1, Figure 2] and [1, Table 1] are
valid for the multivariate case as well. It should be noted how-
ever, that the ratio in eq. 19 is only obtained if either both UPQ
and BPQ are assuming equal variances in all dimensions or both
are adapted to the varying σ2

l . In the limit of L → ∞ we find
DMUPQ/DMBPQ = 1.13 ≡ 0.5280 dB.

Figure 1 compares the predicted performance of MBPQ, BPQ,
and MUPQ to each other and to the performance of actual quan-
tizers found by averaging over the squared error from 50 000 data
points. The results shown are the average for four different sets
of variances {σ2

l }l=1...L where the σ2
l are uniformly distributed

between 0 and 1. The dimensionality L is 40. For easy compari-
son we set all weights wl to 1. The quantizers were not designed
exploiting the knowledge of the Rayleigh amplitude PDF. Instead,
the amplitude PDFs are found using histograms over 2 000 000
amplitude vectors (disjoint from the encoded ones) and numeri-
cal integration was used to find the reconstruction point densities.
This is not necessary for the Gaussian data but it shows that the
histogram method used in section 4 gives valid results.

Figure 1 shows that MBPQ outperforms BPQ by about 1.27 dB
and MUPQ by about 0.5 dB. Thus, for the chosen distribution of
variances the consideration of the different distributions fAl(a)
gives more performance advantage than the adaptation to the ob-
served amplitudes under the erroneous assumption of identical
PDFs. In other words MUPQ outperforms BPQ. However, MBPQ
outperforms both.

4. AUDIO DATA

In this section, we apply MBPQ to sinusoids found using the anal-
ysis/synthesis system described in [9]. The input data are audio
signals from different contemporary artists sampled at 44.1 kHz.
The signals are pre-processed to remove silence intervals. We use
16.5 minutes of audio data for the estimation of the PDFs fAl(a)
via histograms and encode 6 minutes of audio data to find the av-
erage distortions DMBPQ , DMUPQ , and DBPQ . For each analy-
sis block of 10.2 ms (448 samples) a set of L = 40 sinusoids is
extracted. The sinusoids are ordered with increasing frequency.
Before encoding, the amplitudes are normalized by the maximum
amplitude in the set, which has to be transmitted as side informa-
tion.

In the experiments all weights wl are set to 1. An alternative is
to find weights wl by exploiting the masking found from the am-
plitudes al as described in [8]. In this scenario the amplitude quan-
tizers are optimized for a fixed set of wl and the phase quantizers
are optimized for the wl found from the masking function. This
way the weights are adapted to the signal and no additional side
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Fig. 2. Distortions in the sinusoidal components representing
the audio data. Upper graph: MUPQ and BPQ compared to
MBPQ (code = observed distortions, theo = predicted perfor-
mance). Lower graphs: Ratio observed and predicted distortion.

information has to be transmitted. In [8] the gain from omitting
the side information over-compensates the suboptimal gAl(a).

In figure 2 the actual distortions observed for MBPQ, MUPQ,
and BPQ quantizers are compared to the predictions of eqs. 14, 17,
and [1, eq. 22]. The gain from using MBPQ instead of MUPQ for
the quantization of the normalized sinusoids varies between 3.2 dB
and 2.1 dB. The decrease of the performance gap with increasing
rate is due to the fact that MUPQ converges exactly to its predicted
behavior while MBPQ gives distortions about 1.1 dB higher than
predicted, which is likely due to the very low rate in some phase
quantizers. The gain of 2.1 dB corresponds to about 0.7 bits / si-
nusoid and relates to a rate reduction of 5.5 kbit/s for the chosen
block length and 50% overlap of the blocks. The only increase in
complexity to achieve this gain is the design of the phase quan-
tizers according to eq. 11 each time the amplitudes are received.
Comparing MBPQ and BPQ we see that MBPQ outperforms BPQ
by about 1 dB corresponding to 2.6 kbit/s. There is no additional
complexity in MBPQ compared to BPQ.

So far we considered only the distortion introduced to the sinu-
soidal components. Figure 3 shows the observed signal to noise
ratio (SNR) in the reconstructed audio signal. The performance
gain of MBPQ over MUPQ varies between 3.3 dB and 2.5 dB cor-
responding to about 8.6 kbit/s to 6.6 kbit/s. The gain of MBPQ
over BPQ is about 1.1 dB (2.8 kbit/s). The given results con-
sider only the distortion of the signal caused by the quantization
of the sinusoidal components, not the distortion caused by the fact
that the sinusoidal components do not represent the original signal
without distortion. As argued in, e.g., [9], the part of the signal not
captured by the sinusoids is described more efficiently by other
coders, as, e.g., waveform coders.

For the audio data we observe that adapting gΦl(â) to the ampli-
tudes observed in a signal block gives larger gain than considering
the differences in the PDFs of different dimensions. This is shown
by the fact that BPQ outperforms MUPQ and is the opposite of
the observation for the artificial Gaussian data of section 3. Again,
MBPQ performs better than both MUPQ and BPQ.
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Fig. 3. SNR results for the audio signals. Upper graph: SNR
in MUPQ and BPQ compared to MBPQ, values below 0 indicate
better performance of MBPQ. Lower graph: Observed SNR.

5. CONCLUSIONS

Our results show that MBPQ outperforms BPQ and MUPQ. The
observed reduction in rate (about 6.6 kbit/s) for audio data shows
that MBPQ is useful for, e.g., sinusoidal audio coders. MBPQ is
an appealing extension of BPQ and for cases where the amplitude
PDF is equal in all dimensions MBPQ reduces to BPQ. The ad-
vantage over BPQ lies in the consideration of different amplitude
PDFs in different dimensions and the advantage over MUPQ lies
in the adaptation of the phase quantizers to all amplitudes observed
in a signal block. Our results show that the relative importance of
the above two advantages varies with the type of data considered.

6. REFERENCES

[1] H. Pobloth, R. Vafin, and W. B. Kleijn, “Polar quantization
of sinusoids from speech signal blocks,” in Proc. Eurospeech,
September 2003, pp. 1097 – 1100.

[2] W. A. Pearlman and R. M. Gray, “Source coding of the dis-
crete Fourier transform,” IEEE Trans. Inform. Theory, vol. 24,
no. 6, pp. 683 – 692, 1978.

[3] P. F. Swaszek and T. W. Ku, “Asymptotic performance of
unrestricted polar quantizers,” IEEE Trans. Inform. Theory,
vol. 32, no. 2, pp. 330 – 333, March 1986.

[4] D. L. Neuhoff, “Polar quantization revisited,” in IEEE Int.
Symp. Inform. Theory, 1997, p. 60.

[5] K. N. Hamdy, M. Ali, and A. H. Tewfik, “Low bit rate high
quality audio coding with combined harmonic and wavelet
representations,” in Proc. IEEE Int. Conf. Acoust. Speech
Sign. Process., 1996, pp. 1045 – 1048.

[6] T. S. Verma and T. H. Y. Meng, “A 6 kbps to 85 kbps scalable
audio coder,” in Proc. IEEE Int. Conf. Acoust. Speech Sign.
Process., 2000, pp. 877 – 880.

[7] J. Hamkins and K. Zeger, “Gaussian source coding with spher-
ical codes,” IEEE Trans. Inform. Theory, vol. 48, no. 11, pp.
2980 – 2989, 2002.

[8] R. Vafin and W. B. Kleijn, “Entropy-constrained polar quan-
tization and its application to audio coding,” accepted, IEEE
Trans. Speech Audio Proc., 2003.

[9] K. Vos, R. Vafin, R. Heusdens, and W. B. Kleijn, “High-
quality consistent analysis-synthesis in sinusoidal coding,”
in Proc. AES 17th Int. Conf., ’High-Quality Audio Coding’,
1999, pp. 244 – 250.

IV - 200

➡ ➠


