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ABSTRACT

Sinusoidal coding of audio subject to a bit-rate constraint will in

general result in a noise-like residual signal. This residual signal
is of high perceptual importance; reconstruction of audio using

the sinusoidal representation only will typically result in an artifi-

cial sounding reconstruction. In this paper we present a method,

called perceptual linear predictive coding (PLPC), where the resid-
ual is encoded by applying LPC in the perceptual domain. This

method minimizes a perceptual modelling error and therefore rep-

resents only residual components that are of perceptual relevance,

while automatically discarding components masked by the sinu-
soidal coded part. Subjective listening tests show that PLPC per-

forms significantly better than ordinary LPC as a sinusoidal resid-

ual coding technique. Furthermore, PLPC combined with a flexi-

ble segmentation and model order allocation algorithm leads to a
significant gain in terms of R/D performance for fragments with

fast changing characteristics.

1. INTRODUCTION

Sinusoidal coding has proven to be an efficient technique for low

bit-rate coding of audio, see e.g. [1]. Here, a signal is represented
by a sum of sinusoids, where parameters as amplitudes, phases and

frequencies are extracted from the underlying signal. The number

of sinusoids that are extracted is in general limited due to bit-rate

constraints. Consequently, broad-band noise-like components are

typically not represented by sinusoids, since the required number
of sinusoids would be too large. Instead, a separate coder is used

to encode the noise part of the signal. The sinusoidal coder often

uses a perceptual estimation criterion, for example a perceptual

norm [2], to extract the tonal components. The residual signal that
results after extraction of sinusoids is then modelled by the noise

coder.

One common approach of residual coding is to use a filter bank

based on the human auditory system [3]. In this approach the spec-

trum of the residual signal is divided into equivalent rectangular

bandwidths (ERBs), where the energy level in each of the bands
is computed, quantized, encoded and transmitted to the decoder.

A drawback of this method is the relative high bit-rate needed to

encode those parameters (typically 8 kbit/s, see [4]).

A complication of coding the residual signal is that high-energy

but perceptually unimportant tonal components that are still present

in the residual signal may be represented by the noise coder, rather

than the perceptually important noise-like components. In that

case bits are wasted on parts of the spectrum that are masked by

the sinusoidal reconstruction.

One way to overcome the above mentioned problem is to use
a method as described in [5] where perceptual irrelevant sinusoids

are removed from the target signal using an iterative procedure,

prior to noise coding. The iterative procedure is terminated based

on a heuristically determined criterion.

In this paper we present an alternative, efficient method to en-
code the residual after sinusoidal modelling that overcomes the

above mentioned complication without making use of heuristic

criteria. The method is called perceptual LPC (PLPC). It is based

on LPC in the perceptual domain, leading to encoding of the per-
ceptual important components of the residual only. An advantage

of using LPC is that the technique itself is well understood and

that efficient quantization and encoding techniques can be adopted

from e.g. the speech coding field [6]. To avoid confusion with the
LPC related term ’LPC-residual’, we will refer from now on to

the residual signal after sinusoidal modelling as the ’target signal’.

We note that Hermansky used the name perceptual LPC in [7] for

an equal loudness curve based LPC technique in the context of
speech recognition. This method, however, does not take into ac-

count spectral masking.

This paper is organized as follows. In Section 2 the concept

of PLPC will be explained and will be validated with an exam-

ple showing the advantages of perceptual LPC over ordinary LPC.
Section 3 discusses two practical aspects of the proposed method,

while Section 4 explains the use of variable-length time segmen-

tation and model order allocation for PLPC. In Section 5 some

experimental results are discussed and finally, in Section 6, some
conclusions will be drawn.

2. RESIDUAL CODING WITH PERCEPTUAL LPC

LPC coefficients are normally found by minimization of the en-

ergy, or l2-norm, of the modelling error. It can be shown [8] that

this l2-norm can be rewritten as

E =

Z 1

0

P (f)

P̃ (f)
df, (1)

where P (f) and P̃ (f) are the original and LPC-model power spec-
trum, respectively. A consequence of (1) is that the approximation

of P (f) by P̃ (f) is better at the spectral peaks, where more energy

is present than in the valleys of the spectrum [8]. The fact that LPC

tends to model spectral peaks gives rise to modelling problems
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when the target signal is a residual signal where the perceptual im-

portant sinusoidal components are already extracted. This target

signal does not only contain perceptually important noise com-
ponents, but perceptually unimportant (sinusoidal) components as

well. Although those sinusoidal components will be masked by

the perceptual relevant sinusoids, they can contain more energy

than the perceptually more important noise-like components in the
target signal and may, therefore, dominate the power spectrum.

Modelling of the power spectrum P (f) by P̃ (f) will then lead

to inaccurate modelling of perceptual important noise-like parts of

the spectrum. Rather than minimizing the well known l2 distortion
measure as in (1), we minimize in this paper a perceptual relevant

distortion measure. This new approach has the advantage that no

preprocessing step is needed to remove the remaining perceptually

irrelevant tonal components as in [5], since the perceptual distor-
tion measure will automatically recognize that those components

have no perceptual relevance and will, therefore, not be modelled.

The perceptual distortion measure we use is defined in [9] as

‖ε‖2
π =

Z 1

0

â(f)|ε̂(f)|2df, (2)

where ε is the modelling error, ˆ indicates the Fourier transform

operation and â is the reciprocal of the masking threshold. The

relation between ε and the original signal y is given by [10]

ε = y −
pX

k=1

αky(· − k),

with αk the LP-coefficients and p the model order. From [9] it
follows that â is positive and real for all f ∈ [0, 1), and therefore

(2) defines a (perceptual) norm, which we will refer to as ‖ · ‖π .

In order to only spend bits in spectral regions of perceptual im-

portance, we find the LP-filter coefficients αk which minimize the
perceptual norm (2), rather than minimizing the l2 norm of the

modelling error which is done in standard LPC. We can rewrite

our minimization problem as:

min
α

‖ε‖2
π = min

α

Z 1

0

â(f)|ε̂(f)|2df

= min
α

Z 1

0

|ĥ(f)ε̂(f)|2df

= min
α

‖(h ∗ ε)‖2
2, (3)

leading to a minimization of the l2-norm of a filtered modelling

error, where the filter ĥ = â
1
2 . An interpretation of (3) is that the

convolution between h and ε defines a transformation of ε to a

modelling error επ in the perceptual domain, that is, επ = h ∗ ε.

From (3) it thus follows that minimizing the perceptual norm of
the modelling error ε is equivalent to minimizing the l2-norm of

the perceptual modelling error επ , that is

min
α

‖ε‖2
π = min

α
‖επ‖2

2. (4)

Thus, to minimize the perceptual norm of the modelling error, we

can apply LPC to the signal transformed to the perceptual domain.

Figure 1 shows a block diagram (both encoder and decoder)

of the PLPC scheme. The target signal yres is first filtered by a

filter ĥ = â
1
2 which is determined by the psychoacoustical model

(PA model). The function â, and thus the masking threshold, is

computed on the basis of the reconstructed sinusoidal signal ỹsin

white noise

PA model

LPCh

PA model

gain

yres,πyres

ENCODER

ỹsin

α

gain

α

ỹsin

ỹres,π ỹres

DECODER

h−1LPC−1

weighting

Fig. 1. Scheme (both encoder and decoder) of perceptual LPC.

only. This has the advantage that no side information has to be
transmitted since ỹsin is known at the decoder. The filtered signal,

denoted by yres,π , is analyzed in the block labeled LPC where

the LP-filter coefficients α and a gain factor are computed. At

the decoder side, the reconstructed signal ỹres,π is generated by
filtering a colored noise signal (to be explained in Section 3) using

the received filter coefficients α and gain factor. Finally, ỹres,π is

filtered by h−1, resulting in the reconstructed target signal ỹres.

In order to demonstrate the advantages of PLPC over ordinary

LPC, we applied both methods to a signal consisting of two sinu-
soids located at 1300 and 1350 Hz in additive second-order autore-

gressive noise. The spectrum of this signal is shown in Figure 2a.

Because the amplitude of the sinusoid at 1300 Hz is eight times

as large as the amplitude of the sinusoid at 1350 Hz, the 1300 Hz
sinusoid will cause (at least partly) spectral masking of the 1350
Hz sinusoid. With a sinusoidal estimation algorithm based on the

perceptual distortion model as described in [9], the perceptually

most relevant sinusoid is extracted from the original signal. This
results in selection of the 1300 Hz sinusoid, of which the magni-

tude spectrum is shown in Figure 2b. The magnitude spectrum of

the resulting residual signal containing the perceptually less rel-

evant sinusoid at 1350 Hz together with the autoregressive noise
is shown in Figure 2c. This target signal is encoded in two dif-

ferent ways: by applying ordinary LPC and by applying PLPC.

Applying ordinary second-order LPC on this target signal will re-

sult in a LP-filter of which the magnitude response is depicted in

Figure 2e. Clearly the LP-filter is biased towards the tonal compo-
nent, while the perceptually much more important noise compo-

nent is not modelled accurately. Synthesis of the target signal and

adding it to the sinusoidal coded part leads to the total reconstruc-

tion, of which the spectrum is depicted in Figure 2g. Here, the
second-order autoregressive noise is completely missing, resulting

in a perceptually degraded reconstruction.

This problem can be overcome by usage of PLPC as defined

by (4). To do so, the target signal is transformed to the perceptual
domain by h, which results in the spectrum shown in Figure 2d. In

comparison to the noise, the sinusoid at 1350 Hz is now suppressed

which is in line with the spectral masking caused by the perceptu-

ally more important sinusoid at 1300 Hz. Applying second-order

LPC to the transformed signal will result in the LP-synthesis filter
whose magnitude response is shown in Figure 2f. By usage of this

LP-filter the target signal can be reconstructed in the perceptual

domain and back-transformed by h−1 to the l2-domain. Figure

2h shows the final reconstruction in the l2-domain consisting of
the modelled target signal added to the sinusoidal coded part. As

expected, Figure 2h shows accurate modelling of the perceptually

important AR noise and less accurate modelling of the perceptual

less important 1350 Hz sinusoid.
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Fig. 2. Example showing the difference between LPC and PLPC.

By comparison of the reconstructions by LPC and PLPC, two

conclusions can be drawn. In the case where LPC is used in the l2
domain (see Figure 2g), a broad spectral region around the sinu-
soid located at 1300 Hz is severely degraded by noise. Secondly,

the AR noise present in the original signal is not modelled at all.

With PLPC (see Figure 2h), the AR noise component is recon-

structed accurately.

3. PRACTICAL ASPECTS

As mentioned, we need information about the masking threshold,

and thus ĥ, at the decoder. To avoid bit-rate expensive transmission
of h−1 to the decoder, we assume that masking curves are domi-

nated by the perceptual important tonal components of the original

audio signal. With this assumption, the perceptual inverse transfor-

mation h−1 can be determined unambiguously from the sinusoidal
coded part and comes therefore for free in terms of bits, since that

information is already transmitted to the decoder. The validity of

this assumption will be shown experimentally in Section 5.

A second practical aspect is concerning the perceptual mod-
elling error. It will, in contrast to ordinary LPC, not be whitened

over the whole frequency range. The reason for this is that the per-

ceptual transformation is dependent on the reciprocal of the mask-

ing threshold in quiet, which has a very fast decay at very low
and high-frequency spectral regions. After transformation to the

perceptual domain, the target signal is dominated at low and high

frequencies by this fast decay. Unfortunately, these steep spectral

slopes cannot be modelled well with a (low-order) LPC model,
and, consequently, PLPC modelling errors become non-white. To

be able to still use Gaussian substitutes for the modelling error of

the PLPC process, we use white excitation signals that are shaped

by the masking threshold in quiet at very high and low frequencies.
This spectral shaping of the PLPC excitation signal is done in the

block labeled ’weighting’ in Figure 1.

4. VARIABLE LENGTH SIGNAL ANALYSIS

In order to better adapt to the local statistics of the signal and

to avoid quantization and modeling errors in front of signal tran-

sients (a phenomenon which is known as pre-echoes), we perform

a variable-length signal analysis where the LPC model order varies

over segments. To do so, we use the algorithm described in [11],

where we compute distortions using the perceptual distortion mea-
sure (2). The algorithm finds an optimal segmentation s = {s1,
. . . , sN} consisting of N variable-length segments, each having a

length which is an integer multiple of a predefined minimum seg-

ment length (in our case 2.9 ms). In addition, it finds the set of
optimal model orders p = {ps1 , . . . , psN }, where psk denotes the

optimal model order for segment k. By optimal we mean optimal

in terms of rate and distortion (see [11] for details).

5. EXPERIMENTAL RESULTS

We implemented several versions of the proposed method for si-
nusoidal residual coding in a state-of-the-art sinusoid-plus-noise

based audio coder [4] and compared the coding results through lis-

tening tests with speech and audio signals. All signals used were

mono and sampled at 44.1 kHz. The test excerpts were English
female speech, castanets, a harpsichord solo, and pop music songs

by Celine Dion and Eddie Rabbit. We studied the quality improve-

ment of PLPC over standard LPC and the quality improvement

of PLPC when combined with a flexible time segmentation and
flexible model order allocation algorithm. Furthermore, we com-

pared PLPC with the perceptual transform based on the masking

threshold of the total input signal to the case where the transform

was based on the masking threshold computed over the sinusoidal
coded part only. Finally, we compared our method with the filter-

bank approach [3], after having removed the perceptual irrelevant

sinusoids with the algorithm described in [5].

For the fixed segmentation cases, LPC or PLPC analysis/syn-

thesis was applied on Hanning windowed segments of length 17.4
ms with 10th order LPC/PLPC. With flexible time segmentation

and variable model order, the segments were Hanning windowed

and allowed to vary from 5.8 ms to 23.2 ms in steps of 2.9 ms.

The model orders were chosen from the set {4, 6, 8, 10}. In all
cases, the target bit rate was set to 23 kbit/s, where 21 kbit/s was

allocated to a sinusoidal coder and 2 kbit/s to the noise coder, in-

cluding the segmentation overhead for the flexible time segmenta-

tion. We allocated 3 bits for each LPC-coefficient and 6 bits for
the (log) LPC-gain. In situations with flexible model order, 2 bits

per segment were allocated for model order information. In the

case were we used the filter bank approach for coding the resid-

ual signal, the target bit rate was 24 kbit/s, of which 16 kbit/s was
allocated to the sinusoidal coder and 8 kbit/s to the noise coder

(see [4] for details). In our experiments, eight participants (the au-

thors not included) listened to the original and five coded versions

of the test excerpts. Every coded version had to be given a score

from 1.0 (poor) to 5.0 (excellent).

Figure 3a shows the comparison between LPC and PLPC for

fixed segmentation and fixed model order. We see that PLPC

shows a better performance for all five fragments. A t-test with

significance level α = 2.5% reveals that for all fragments except

the Eddie Rabbit fragment the differences in quality are statisti-
cally significant. Figure 3b shows the scores of PLPC with flexible

segmentation and flexible order allocation and PLPC with fixed

segmentation and fixed order allocation. For the castanets sig-

nal, which contains many transients, flexible segmentation leads to
a statistically significant quality improvement, following the out-

come of a t-test. For all other signals, the gain is not statistically

significant. Figure 4a shows the results of flexible segmentation

PLPC where the perceptual transformation is based on masking
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Fig. 3. Experimental results averaged over all participants with
accompanying standard deviation.

curves computed over the total input signal compared to when the

perceptual transform is based on masking curves computed over

the sinusoidal coded part only. Both methods result in good scores

with small differences, validating the assumption made in Sec-
tion 3 that the transform can be based on the sinusoidal coded

part only. In Figure 4b, PLPC with flexible time segmentation,

variable model order and a transform based on the sinusoidal re-

construction only is compared to the filter-bank approach. A t-test
of the data reveals that PLPC with flexible time segmentation and

variable model order is significantly better compared to the state-

of-the-art coder for the castanets and Celine Dion fragment. For

the harpsichord fragment, both techniques perform very well with
the filter bank approach having the best performance. For the fe-

male speech and Eddie Rabbit fragments both methods end up with

an almost equal score.

6. CONCLUSIONS

We presented a new method to encode the residual after sinu-

soidal coding. This new method, called perceptual LPC (PLPC),

is based on coding the residual signal after sinusoidal modelling in

the perceptual domain by LPC. Where ordinary LPC minimizes a
l2-norm of the LPC modelling error to determine the optimal LPC-

coefficients, this new method minimizes a perceptual norm of the

modelling error. We showed that minimizing this perceptual norm

is equivalent to minimizing a l2-norm of the perceptually trans-
formed modelling error, where the perceptual transform is based

on the masking threshold. In contrast to other techniques aimed at

coding the residual after sinusoidal coding, this method automati-

cally models only the perceptually relevant noise-like components

and does not waste bits on perceptually irrelevant sinusoidal com-
ponents left after sinusoidal modelling. Listening tests showed that

PLPC performs much better as a sinusoidal residual coding tech-

nique than ordinary LPC. We combined this method with a flex-

ible time segmentation and variable model order allocation algo-
rithm to be able to adapt the segmentation and model order to the

underlying signal, leading to a significant gain in performance in

comparison to a fixed time segmentation when applied to signals

containing transients.
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Fig. 4. Experimental results averaged over all participants with
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