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ABSTRACT*

In this paper we consider the warped DFT as an alternative basis 

for psychoacoustic models. The appropriate construction of the 

transform is approached, aiming precise critical band power 

analysis. It is shown that sufficient spectral resolution can be 

obtained for sample block lengths several times shorter than 

1024 or 2048 commonly used in the FFT based ear models. Thus 

temporal resolution is improved and comparable with that of 

more complex perceptual models utilizing filter banks. The 

computational complexity is estimated as acceptable for real-

time processing. 

1. INTRODUCTION 

In the contemporary digital audio processing a crucial role is 

played by psychoacoustic. It is utilized both in signal coding and 

speech enhancement to keep inaccuracies unperceivable to the 

listener. The essential part of every psychoacoustically 

motivated systems is a model mimicking the behavior of the 

human auditory system analyzing sounds in nonequal critical 

bands (CBs). Its task is to determine the masking threshold - the 

power level separating strong relevant signal components from 

inaudible masked ones. Then the threshold controls  quantization 

in coding or spectral subtraction / weighting in noise removal. 

 As the masking level depends on signal power, the first and 

most important step in its calculation is CB power analysis. The 

accuracy of this stage limits that of all subsequent ones 

(spreading, tonality estimation, normalization, absolute threshold 

checking) leading finally to the perceptual threshold. Two 

approaches currently compete in the CB power analysis.  

 The first group of the solutions is inspired by Johnston's 

famous article [1]. The idea consists in computing the FFT of 

windowed signal segment and then partitioning transform 

coefficients into groups corresponding to CBs of hearing. The 

sum of squared magnitudes of the group elements gives an 

estimate of according CB power. The attainment of reasonable 

spectral resolution in narrowest CBs requires using the FFT with 

rather long time window. Thus conceptual simplicity and 

efficiency are leveled by poor temporal resolution not sufficient 

to deal with finer phenomena such as pre-masking [2]. 

  The second class was invented to eliminate this drawback, 

exploiting nonuniform filter bank to decompose signal. Then 

short term power spectral density is calculated on the frame of 

subband coefficients. The main shortcoming is a general 

complexity, especially if good CB approximation is of interest 

and an efficient tree-structured filter banks are not sufficient. 
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 No solution definitely outperforms the other, so both of them 

have their own applications. For example, the two coexist in 

quite recent standard for Perceptual Evaluation of Audio Quality 

- PEAQ (ITU-R Recommendation BS.1387). The efficient but 

simplified "Basic" version of PEAQ exploits the FFT, whereas 

the precise "Advanced" variant can use filter bank as well. 

 Our proposition is an extension of the first approach, 

exploiting recent advances in warped spectral analysis. Namely, 

we suggest that low dimensional warped DFT studied recently 

by Mitra [3] can successfully replace the FFT of long sample 

block. This is possible as warped transform allows allocating its 

frequency samples in accordance with CB distribution. Thus 

both good spectral and temporal resolutions can be reconciled in 

the WDFT based psychoacoustic model. 

2. DFT AS TRADITIONAL BASIS FOR EAR MODELS 

In the FFT based ear model, the transformation of the signal 

from the frequency domain to the CB (or Bark) domain reduces 

to the appropriate grouping of the half of the transform values in 

accordance with well known critical bandwidths [1]. The 

partitioning is determined for given transform size and sampling 

frequency. Two representative examples are given in Table 1.  

 Several evident observations can be made about these 

tabulated data. As the FFT has uniform spectral resolution 

whereas critical bandwidths strongly vary with frequency, very 

different numbers of bins are assigned to particular CBs. In the 

part A of the table, group quantities vary from 6 to 224, and 

from 3 to 18 in the part B. Thus wide, high frequency CBs 

supported with many coefficients are obviously preferred. Power 

estimation, as well as tonality measurement, is more accurate. In 

turn, lower CBs having only few data, are treated very 

superficially. On the contrary, all CBs are equivalent from 

auditory point of view, so they all should be analyzed with 

similar precision in perceptual domain. Even paradoxically, 

lower bands can be regarded as more significant as speech 

spectrum spans 0 .. 4 kHz and ear is more sensitive in this range. 

The eighteen groups corresponding to this range comprise of 

only ~280 of all 1024 bins of the half FFT. 

 The significant consequence of the above facts is that only 

the FFT of rather large size can ensure reasonable accuracy (at 

least several frequency samples) in lower subbands. The 

computational load is not much a barrier having fast transform - 

the widening of time window is a real problem. For common 

analysis segment sizes of 1024 and 2048, corresponding time 

slots are 20 - 40 ms. Such a time resolution is sufficient to deal 

with coarser phenomena e.g. post-masking lasting even hundreds 

of milliseconds. But it is too big if rapid events (such as pre-

masking) are modeled, having period of several milliseconds. 
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 The only solution is to find an alternative means of transition 

to the Bark domain. 

Table 1: Typical mappings from FFT bins to Critical Bands. 

 A        B 

(FFT size = 2048, Fs = 32 kHz) (FFT size = 256, Fs = 8 kHz)

CB  Bin range No. Freq. [Hz] Bin range No. Freq. [Hz]

1  1 - 6 6 16 - 94 1 - 3 3 31 - 94

2  7 - 12 6 109 - 188 4 - 6 3 125 - 188

3  13 - 19 7 203 - 297 7 - 9 3 219 - 281

4  20 - 25 6 313 - 391 10 - 12 3 313 - 375

5  26 - 32 7 406 - 500 13 - 16 4 406 - 500

6  33 - 40 8 516 - 625 17 - 20 4 531 - 625

7  41 - 49 9 641 - 766 21 - 24 4 656 - 750

8  50 - 58 9 781 - 906 25 - 29 5 781 - 906

9  59 - 69 11 922 - 1078 30 - 34 5 938 - 1063

10  70 - 81 12 1094 - 1266 35 - 40 6 1094 - 1250

11  82 - 94 13 1281 - 1469 41 - 47 7 1281 - 1469

12  95 - 110 16 1484 - 1719 48 - 55 8 1500 - 1719

13  111 - 128 18 1734 - 2000 56 - 64 9 1750 - 2000

14  129 - 148 20 2016 - 2313 65 - 74 10 2031 - 2313

15  149 - 172 24 2328 - 2688 75 - 86 12 2344 - 2688

16  173 - 201 29 2703 - 3141 87 - 100 14 2719 - 3125

17  202 - 236 35 3156 - 3688 101 - 118 18 3156 - 3688

18  237 - 281 45 3703 - 4391 119 - 128 10 3719 - 4000

19  282 - 339 58 4406 - 5297   

20  340 - 409 70 5313 - 6391   

21  410 - 492 83 6406 - 7688   

22  493 - 608 116 7703 - 9500   

23  609 - 768 160 9516 - 12000   

24  769 - 992 224 12016 - 15500   

25  993 - 1024 32 15516 - 16000   

3. FUNDAMENTALS OF WARPED DFT 

3.1. General WDFT definition 

The idea of spectrum warping is not novel. It was considered in 

the 70s by Oppenheim et al. in the context of nonuniform 

spectral analysis [4]. The concept was to pass the analyzed 

signal through allpass chain to achieve an auxiliary sequence 

having deformed spectral contents. Then pure DFT of this 

sequence represents the warped spectrum of the input signal. 

The corresponding processing schema is shown in Fig. 1. 

Fig. 1. Warped spectrum via allpass chain preprocessed FFT 

The theory behind this is known as Laguerre expansion 

decomposing signal into infinite set of infinite-length Laguerre 

sequences. As obvious truncations must be done, a certain error 

is unavoidable, resulting in only approximated warped spectra 

obtained this way. 

The subject became alive again in the 90s when the ideas of 

warped or allpass frequency transformed filter banks, wavelets 

and linear prediction appeared. Eventually, in recent years, Mitra 

et al. has drawn the concepts of two warped transforms - 

Warped Discrete Fourier Transform [3] and Warped Cosine 

Transform. 

The Warped Discrete Fourier Transform (WDFT) of the 

sequence x n  of N  points is defined as 

1

0

ˆ ˆ ˆ 0.. 1
N

n

k k k

n

X z X z x n z k N   (1) 

where ˆ
kz  are the images of equidistant points of the unit circle 

in the z plane, resulting from the transformation 

2

1 1ˆ 0.. 1
k

j
N

k k kz e z A z k N  (2) 

with arbitrary order allpass function A z .

Bilinear mapping of the z plane into new warped ẑ plane is 

done this way. The points uniformly distributed on the unit 

circle in the first plane still lie on the unit circle in the second 

plane but they become unequally spaced. This is explained in 

Fig. 2. 
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Fig. 2. Locations of DFT and WDFT frequency samples 

Thus the WDFT is a generalization of the DFT, with frequency 

samples allocated nonuniformly but regularly over the unit 

circle. From the other point of view the WDFT is a special case 

of the most general Nonuniform Discrete Fourier Transform 

(NDFT) allowing sampling z transform at distinct but arbitrary 

selected points on the z plane.

In matrix notation (with X̂ k  denoting ˆ
kX z ), the WDFT 

can be represented as 
1

0 0

1

1 1

1

1 1

ˆ 10 0

ˆ 11 1

ˆ 11 1

N

N

N

N N

A z A zX x

xX A z A z

x NX N A z A z

 (3) 

where the transform matrix incorporating allpass transformation 

is still the Vandermonde matrix as for the conventional DFT. 

The determinant of such a matrix is non-zero for different kz .

Thus the invertibility of the transform is guaranteed, although 

the problem can be ill-conditioned. 

The WDFT inherits some properties of the DFT. An 

important one is its conjugate symmetry for real data 

*ˆ ˆX N k X k       (4) 

3.2. WDFT with first-order allpass

The simplest variant of the WDFT is that based on real 

coefficient first order allpass [3] 
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The coefficient can potentially be a complex number, but the 

corresponding mapping rotates coordinate system what is 

generally not desired. Stability requires 1a . The 

characteristic properties of this variant of the WDFT are 

monotony and uniqueness of frequency mapping, what is not 

true for higher order allpasses [3]. Depending of the sign of a ,

low or high frequency range is stretched whereas the remaining 

part of the unit circle becomes compressed. Formally, this can be 

expressed as 

ˆ

sin
ˆ 2arctan for

1 cos ˆ

j

j

z ea

a z e
  (6) 

4. WDFT IN CB POWER ESTIMATION 

4.1. Selection of allpass function and its coefficients 

The first step in employing the WDFT in psychoacoustic model 

is the design of the appropriate allpass transformation. The 

frequency samples of the z transform should be established 

uniformly in the perceptual domain. 

Table 2: Mappings from WDFT bins to Critical Bands. 

A       B 

(WDFT size = 256, Fs = 32 kHz) (WDFT size = 256, Fs = 8 kHz)

CB  Bin range No. Freq. [Hz] Bin range No. Freq. [Hz]

1  1 - 4 4 22 - 86 1 - 7 7 13 - 92

2  5 - 9 5 108 - 195 8 - 15 8 105 - 198

3  10 - 13 4 217 - 283 16 - 22 7 212 - 294

4  14 - 18 5 305 - 395 23 - 29 7 308 - 394

5  19 - 23 5 417 - 509 30 - 36 7 408 - 498

6  24 - 28 5 533 - 628 37 - 44 8 514 - 627

7  29 - 33 5 653 - 752 45 - 52 8 644 - 768

8  34 - 39 6 778 - 910 53 - 59 7 786 - 904

9  40 - 45 6 937 - 1079 60 - 67 8 925 - 1080

10  46 - 51 6 1109 - 1264 68 - 74 7 1103 - 1255

11  52 - 57 6 1297 - 1469 75 - 81 7 1282 - 1458

12  58 - 63 6 1506 - 1700 82 - 88 7 1489 - 1694

13  64 - 69 6 1741 - 1964 89 - 95 7 1731 - 1972

14  70 - 75 6 2012 - 2272 96 - 102 7 2015 - 2301

15  76 - 81 6 2329 - 2642 103 - 109 7 2352 - 2688

16  82 - 87 6 2711 - 3095 110 - 116 7 2748 - 3134

17  88 - 93 6 3182 - 3671 117 - 123 7 3202 - 3629

18  94 - 98 5 3782 - 4286 124 - 128 5 3703 - 4000

19  99 - 104 6 4428 - 5269   

20  105 - 108 4 5469 - 6146   

21  109 - 113 5 6402 - 7615   

22  114 - 117 4 7973 - 9209   

23  118 - 122 5 9680 - 11886   

24  123 - 127 5 12517 - 15277   

25  128 - 128 1 16000 - 16000   

Thus far the problem of perceptual frequency warping was 

considered only in one but very exhaustive study [5] aiming the 

design of auditory filters. There was shown that first order 

allpass is sufficient to well approximate the perceptual Bark and 

ERB (Equivalent Rectanngular Bandwidth) scales. Based on the 

optimization results, the formula 

1

22
0.1957 1.048 arctan 0.07212

1000

s
Bark

f
a     (7) 

was pointed out as directly giving allpass coefficients 

appropriate for given sampling frequency. For two common 

frequencies 8 and 32 kHz, it gives a equal -0.4092 and -0.7056 

accordingly.  

 Due to the same warping mechanism, these results can be 

directly applied to the WDFT, leading to the organization of the 

bins shown in Table 2.  It is evident that all CB have assigned 

comparable numbers of the transform bins. No band is preferred. 

Referring to Table 1, it can be noted that the same resolution in 

first Barks can be achieved for the warped transforms shorter 

several times than the FFT. At the same size, the measures of 

spectral flatness and tonality can be more accurate, owing to the 

z-transform sampling matching the Bark scale. 

4.2. Power compensation

The WDFT in its original form does not preserve signal power in 

corresponding parts of the unit circle before and after allpass 

transformation. As warping causes one frequency range to 

stretch but the other to narrow, it should be supported with 

appropriate scaling of the WDFT magnitude to retain correct 

power level in each CB. 
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Fig. 3. Power compensation of WDFT (a=0.7) of the unit pulse 

Beginning with the desired signal power equality for an arbitrary 

sector min max,z z of the unit circle and its image min max
ˆ ˆ,z z

max max

min min

ˆ
2 2

ˆ

ˆ1 1
ˆ

ˆ2 2

z z

z z

dz dz
X z X z

i z i z
   (8) 

we can convert the left side to be  

max max

min min

2
0.5

2ˆ
2

ˆ

1ˆ
ˆ

ˆ 1 1

z z

z z

a zdz z a dz
X z X

z az z a az z
   (9) 

This states that the compensation factor must be the square root 

of the expression in the square brackets above. As only the 

magnitude is of interest in the power estimation and z  is a root 

of unity, we can neglect phase and further reduce normalization 

factor to express the power corrected WDFT as 

21ˆ ˆ
1

PC

a
X z X z

az
     (10) 

This result is similar to that obtained in [6] where the power 

compensation of the first order allpass chain preprocessed FFT is 

approached by  means of additional leading filter (see Fig. 1). 

4.3. Computational complexity

It seems that algorithms of efficiency comparable to that of the 

FFT, can not be constructed for the WDFT, due to the 
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asymmetry of the WDFT matrix. However, the algorithm with 

direct complex matrix multiplication can be highly optimized. 

 Currently, the most advanced algorithm (although still of 

complexity 2O N ) was proposed in [3]. It exploits the 

factorization of the WDFT matrix into the product of real, the 

DFT (implemented with the FFT) and complex diagonal 

matrices. This method is well suited for image processing where 

all data come at the same time. 

 In audio processing, where samples come one after another, 

even the direct realization can be used. If we take into conside-

ration the WDFT symmetry for real data (4), then (3) can be 

rewritten as 

0

1
1

0

1

ˆ 0

ˆ 1

ˆ 1

n

nN

n

n

N

A zX

X A z
x n

X N A z

    (11) 

Each term in this summation is related to only one input sample. 

It can be computed when the sample came and accumulated to 

give the result after N samples. The computational load per input 

sample is O N  and it is similar to that in the preprocessed FFT 

approach, where the chain of N  allpasses must be recalculated 

for each input sample.  

5. EXPERIMENTAL RESULTS 

To check the relevance of the proposed approach, several 

preliminary experiments of calculating masking threshold with 

different bases was done for music signals. Here only one, more 

representative is shown. Namely, CB power analysis of castanets 

type signal sampled at 32 kHz (shown in Fig. 4) was performed 

by means of the WDFT, the allpass chain preprocessed FFT and 

the pure FFT. The Hann window was applied in all cases. The 

FFT size and partitioning were as in Table 1-A. The overlap was 

set at 50%. The warped solutions were of the size of 256, 

configured as described in Sec. 4.1 and 4.2. In this case, no 

overlap was used. 
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Fig. 4. Analyzed audio signal - castanets 

 The resulting power spectrograms are shown in Fig. 5. The 

warped solutions of the transform size eight times shorter than 

the FFT give very clear analysis results. In lower CBs (2 - 10) 

power estimation seems more accurate, though there are fewer 

coefficients in corresponding transform subsets. Power 

estimation for the preprocessed FFT is very similar to that due to 

the WDFT, though image is smeared. One could expect that it 

can serve as sufficiently good approximate of the exact WDFT 

in some cases. 
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Fig. 5. Bark power spectrogram obtained using: a) WDFT,  

b) allpass chain preprocessed FFT, c) FFT 

6. CONCLUSIONS  

The presented facts indicate that the WDFT can really serve as 

the basis for psychoacoustic models. Preliminary experimental 

results seem promising. The warped transform, with frequency 

samples allocated in accordance with perceptual scale, 

outperforms the FFT, however at the cost of increased 

complexity. For full evaluation of the new approach, it should be 

compared with those based on filter banks, and applied in 

practical psychoacoustic system of coding or enhancement. The 

works have been started and results are expected soon. 
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