
A MEMORY-EFFICIENT ALGORITHM FOR NETWORK ECHO CANCELLATION IN 
VOIP SYSTEMS 

Anil Ubale 

Intel Corporation 
350 E. Plumeria Drive 

San Jose, CA 95134, USA 

ABSTRACT 

In recent years, considerable interest has been focused on 
voice-over-IP (VoIP) systems.  VoIP media gateways 
implement voice and packet processing for hundreds of 
channels.  One of the limiting factors in such high channel-
density voice processing applications is the memory 
requirement.  A substantial amount of memory is used to 
store the coefficients of network echo canceller.  This 
paper describes a new algorithm that reduces the memory 
requirements for echo cancellation by a factor of 2 to 4.  
When the new memory reduction algorithm is combined 
with standard NLMS, it also provides faster convergence 
rate, and better echo path tracking than the standard 
NLMS algorithm. 

1. INTRODUCTION AND BACKGROUND 

In recent years, communication networks and services 
based on the Internet protocol (IP) have grown by at a 
tremendous rate.  The continued rapid advance of the 
internet has made it necessary to the convergence of the 
public switched telephone network (PSTN) and the 
internet. A considerable interest has been focused on 
Voice-over-Packet (VoP), or Voice-over-IP (VoIP) 
systems.  The transition of media signals from circuit-
switched PSTN and packet-switched IP network is 
accomplished in a VoIP system is accomplished in a 
media gateway.  A media gateway includes several signal 
processing components that operate to convert voice 
signals into a stream of packets that are sent over a packet-
switched network such as the Internet and convert the 
packets received at the destination back to voice signals.  
A simplified logical flow diagram of a media gateway is 
shown in Figure 1 [1].  The voice processing component 
of the media gateway system transforms time-division 
multiplexed (TDM) voice signals from the PSTN side to 
IP packets and vice-versa.  The voice processing 
component, usually implemented on a media processing 

card has to perform telephony and voice processing 
functions on hundreds of TDM (DS0) [2] channels.   

Supporting high channel density is a significant 
challenge.  In Intel® media gateway solution the voice 
processing component is implemented on a digital signal  

 Figure 1.  VoIP Media Gateway system logical flow. 

processor IXS1000 [1].  As shown in Figure 2, the 
IXS1000 incorporates multiple signal processing cores, a 
control processing core, and a high-speed internal bus, and 
a memory movement engine. The signal processing cores 
have tightly-coupled RISC and DSP resources, and local 
instruction and data memories.  The signal processing 
cores are further assisted by global memory on the chip.  

Figure 2. Intel IXS1000 Signal Processor Block 
Diagram. 

Factors affecting the number of channels supported in 
a voice processing component of a media gateway system 
are the MHz and memory requirements for each channel.  
In IXS1000 the on-chip global memory SRAM stores the 
firmware including, program, tables, and state information 
data for all channels.  Among various voice processing 
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tasks is network echo cancellation.  The network echo 
canceller requires a large amount of state memory per 
channel to be stored in the global memory.  This is 
especially true when echo cancellers for echo paths with 
long impulse responses (>= 64 ms) are desired [3].  

Generally, the voice processing per channel is 
performed every frame.  A frame is a time interval used to 
generate a voice packet to be transferred to the IP network 
and vice-versa.  The frame size is typically dictated by the 
voice compression used.  For sample-based voice 
compression methods the frame size can be arbitrarily 
chosen.  In this paper, we assume a frame size of 10 ms or 
80 samples.  The state memory required by the echo 
canceller to perform its corresponding function is 
transferred via direct memory access (DMA) mechanisms 
into and out of the signal processing cores from and to the 
global memory for every frame.  Typically, a DSP device 
can be configured to perform voice and packet processing 
for multiple VoIP channels and each VoIP channel can 
have its own persistent state memory storage in the global 
memory.  Accordingly, the number of VoIP channels that 
can be processed depends, among other factors, on the 
state memory requirements of the echo canceller.  Thus, 
higher channel densities can be achieved if the state 
memory requirements of the echo canceller can be reduced 
without significant quality impairment of voice signals.   

A simplified block diagram of a network echo 
canceller is shown in Figure 3.  In general, a substantial 
portion of the state memory requirements of an echo 
canceller is allocated for storing coefficients of the 
adaptive filter h(n).  For example, for a 128 ms echo 
canceller the filter length is 1024, and the state memory 
required to store the coefficients with 16-bit precision is 2 
Kbytes.   In this paper, we describe a new method to 
reduce the memory requirements for storing the 
coefficients of the echo canceller by a factor of 2 to 4.  We 
also show that the new method provides faster 
convergence rate than the traditional normalized least 
mean square (NLMS) [4] algorithm.   

2. A MEMORY EFFICIENT ECHO 
CANCELLATION ALGORITHM 

As a frame of voice samples for a particular channel is 
scheduled for echo cancellation, the echo canceller 
coefficients corresponding to that channel are first 
transferred from the global memory to local memory.  An 
adaptation algorithm that minimizes the echo, e.g,. NLMS, 
is run every sample.  Thus the coefficients get updated 
every sample in the local memory.  At the end of the 
frame, the coefficients are transferred from local memory 
to global memory, and the processing for next channel can 
the data compression of the echo canceller coefficients is 
performed.  Thus the memory requirements for a 1024-tap   
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Figure 3.  Simplified block diagram of  a network echo 
canceller.

echo canceller coefficients are 2 Kbytes in local memory 
but significantly lower when stored in the global memory.  
When the same channel’s next frame is scheduled to be 
processed by the signal processing cores, decompression 
of the data is performed, so that the filter coefficients are 
recovered in 16-bit precision.  The trick is to minimize the 
loss of precision in the most important taps of the echo 
canceller.  The most important taps of an echo canceller 
are the ones with the highest magnitude.  Therefore, our 
new method aims to retain full precision for the highest 
coefficients. 
Let us think of the coefficient array as two arrays -- a sign-
bit array and a magnitude array.   The magnitude array 
requires 15 bits per coefficient.  Let us assume that a 50% 
reduction in memory requirements is desired.  Thus for a 
1024-tap echo canceller we will have a bit-quota of 8192 
bits per frame or 8 bits per coefficient.  Now consider the 
magnitude array as a two-dimensional array, row numbers 
are taps or coefficients, and column numbers are bits.  
Thus, rows are coefficients 0 to 1023 from top to bottom, 
and columns are bits 14 to 0 (MSB to LSB) from left to 
right.  This is a 1024 X 15 array.  Note that, we could get 
some savings just by throwing away the 0 bits in the left-
side of this array and without incurring any loss!  Thus we 
code the left-most non-zero MSB position.  That is, we 
traverse from left top of the array to right bottom of the 
array in a zig-zag fashion.  Down to bottom, then up to top 
and right, then down again, till we hit first 1 bit!  The 
position of this bit is coded using 4 + log2(TapLength) 
bits, i.e., 15 bits in our example.  The 4 bits are needed to 
specify the column position and log2(TapLength) to 
specify the column position.  Note that,  we just found the 
highest-coefficient, we immediately pack this coefficient 
with full precision.  The number of bits required is given 
by the column position coded with 4 bits already.  Next we 
pack the sign bit corresponding to this coefficient using 1 
bit.  We also pack 4 coefficients adjacent to the highest 
coefficient with the same precision as that of highest 
coefficient.  Although this might waste a few bits to 
specify the precision, it saves bits required to specify the 
row position of the coefficients.  This improvement is 
motivated by the fact that the coefficients next to the echo 
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path peak are also high.  Once we code these coefficients, 
we zero-out its bits in the magnitude array, i.e., this row is 
all zeros now.  We continue traversing in the same zig-zag 
manner and as soon as we hit a 1, we first code the 
position of the new 1.  Immediately we also code this 
coefficient with full precision as required.  The position is 
coded relative to the previous position.  In essence, we are 
choosing the strongest coefficients and coding them and 
their positions.  Also note that we are coding them with 
just enough precision and not more and not less.  We 
continue this process till we either run out of bits (bit-
quota) or reach the right bottom of our two-dimension 
array. 

The algorithm steps are specified below: 
1. n, coefficient index = 0.  k, = bit position = 14. 
2. Is k-th bit of | h(n)| = 1? 
3. If no jump to step 6. 
4. Encode n differentially relative to old n (=0 

initially).  Encode | h(n)| with k bits and sign of  
h(n) with 1 bit.  Old n n.  Set h(n) = 0. 

5. Reduce bit quota by the bits used in step 4. 
6. If bit quota is zero or less, STOP. 
7. n n+1.
8. Is n = Tap length? 
9. If no jump to step 2. 
10. k k-1. 
11. Is k = -1? 
12. If no jump to step 2. 
13. STOP. 
Note that, this method zeros out the spurious 

coefficients, i.e., coefficients that are small 
(logarithmically).  Therefore in case of sparse and quasi-
sparse (dispersion is limited to few milliseconds) the 
method increases the convergence rate.  In other words, 
every frame the small or near-zero coefficients are 
adjusted back to zero, thus allowing a faster adjustment of 
larger coefficients.  This is similar in principle to the 
methods where the larger coefficients are given larger 
scale factors in order to improve convergence [5],[6],[7]. 

The savings in memory requirement, and faster 
convergence rate, however come at the expense of 
increased complexity.  Every frame (typically 10 ms or 80 
samples) the compression and decompression algorithm is 
executed adding to the MHz requirements.  The algorithm 
presents a trade-off between memory die-cost savings vs. 
MHz increase.  The algorithm can also be implemented in 
silicon, in which case the trade-off is between the memory 
and compression/decompression engine die-costs. 

3. SIMULATION RESULTS 
We compared the results of out new memory efficient 
algorithm with the standard NLMS algorithm.  Note that, 
the coefficient compression/decompression can be 
combined with other LMS and affine-projection type 
algorithms as well. 

The objective of these simulations is to compare the 
NLMS and the new memory efficient NLMS algorithms in 
the context of network echo canceller application.  For our 
simulations we use two different echo paths as shown by 
their impulse responses in Figure 4.  The sparse impulse 
response is the echo path model 1 from reference [3] and 
represents a single reflection echo.  The dispersive 
impulse response represents multiple reflections and a 
dispersion of approximately 9 ms.  This is echo path 
model 7 from reference [3].  The experiments use 
composite source signal (CSS) as defined in [3] and male 
speech signal as far in excitation input signals.  The 
sampling rate is 8 kHz.  Both the echo canceller tap length 
and echo path length are 1024 taps.   

The compression and decompression of the 
coefficients is performed every frame, where the frame 
length is 80 samples.  We compare results when the new 
algorithm provides memory reductions by a factor of 2 and 
4.

Figures 6, 7, 8, and 9 compare the misalignment given 
by, ||h – h’||/||h|| for the NLMS and the new algorithm.  We 
can see that the new memory efficient algorithms also 
provide faster convergence rate compared to standard 
NLMS algorithm.  The convergence rate improvement is 
even better at higher memory reductions.  However, using 
very high memory reductions may lead to slower 
convergence rate or divergence for highly dispersive echo 
paths.  The improvement in convergence speed is 
consistent across both CSS and speech input signals.   

We also confirmed that the algorithm has desirable 
echo path tracking properties and faster convergence rate 
when echo path changes as shown in Figure 10.  

Figure 4. Two impulse responses used in the 
simulations (a) single reflection sparse, (b) multiple 
reflections dispersive.
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Figure 5 Input far in signals used in the simulations (a) 
Composite source signal, and (b) Speech signal. 

Figure 6. Misalignment for CSS far in signal and single 
reflection sparse impulse response ( _ ) NLMS 
algorithm, ( _ _ ) memory efficient NLMS algorithm 
with compression by a factor of 2, ( _. ) memory 
efficient NLMS with compression by a factor of 4. 

Figure 7. Misalignment for CSS far in signal and 
multiple reflection dispersive impulse response: ( _ ) 
NLMS algorithm, ( _ _ ) memory efficient NLMS 
algorithm with compression by a factor of 2, ( _. ) 
memory efficient NLMS with compression by a factor 
of 4. 

Figure 8. Misalignment for Speech far in signal, other 
parameters are same as Figure 6. 

Figure 9.  Misalignment for Speech far in signal, other 
parameters are same as Figure 7. 

Figure 10 Misalignment during echo path change.  The 
echo path changes from impulse response Fig 4(a) to 
Fig 4(b) at 15 seconds.  The input is CSS signal.

4. CONCLUSION 

We presented a memory efficient echo cancellation 
algorithm.  This algorithm can reduce the memory 
requirements for storing echo canceller coefficients across 
frames in a VoIP media gateway by a factor of 2 to 4.  
Further the algorithm when combined with standard 
NLMS also improves the convergence rate of the echo 
canceller over the standard NLMS algorithm. 
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