
A MEMORY-EFFICIENT ALGORITHM FOR NETWORK ECHO CANCELLATION IN
VOIP SYSTEMS

Anil Ubale

Intel Corporation
350 E. Plumeria Drive

San Jose, CA 95134, USA

ABSTRACT

In recent years, considerable interest has been focused on
voice-over-IP (VoIP) systems. VoIP media gateways
implement voice and packet processing for hundreds of
channels. One of the limiting factors in such high channel-
density voice processing applications is the memory
requirement. A substantial amount of memory is used to
store the coefficients of network echo canceller. This
paper describes a new algorithm that reduces the memory
requirements for echo cancellation by a factor of 2 to 4.
When the new memory reduction algorithm is combined
with standard NLMS, it also provides faster convergence
rate, and better echo path tracking than the standard
NLMS algorithm.

1. INTRODUCTION AND BACKGROUND

In recent years, communication networks and services
based on the Internet protocol (IP) have grown by at a
tremendous rate. The continued rapid advance of the
internet has made it necessary to the convergence of the
public switched telephone network (PSTN) and the
internet. A considerable interest has been focused on
Voice-over-Packet (VoP), or Voice-over-IP (VoIP)
systems. The transition of media signals from circuit-
switched PSTN and packet-switched IP network is
accomplished in a VoIP system is accomplished in a
media gateway. A media gateway includes several signal
processing components that operate to convert voice
signals into a stream of packets that are sent over a packet-
switched network such as the Internet and convert the
packets received at the destination back to voice signals.
A simplified logical flow diagram of a media gateway is
shown in Figure 1 [1]. The voice processing component
of the media gateway system transforms time-division
multiplexed (TDM) voice signals from the PSTN side to
IP packets and vice-versa. The voice processing
component, usually implemented on a media processing

card has to perform telephony and voice processing
functions on hundreds of TDM (DS0) [2] channels.

Supporting high channel density is a significant
challenge. In Intel® media gateway solution the voice
processing component is implemented on a digital signal

 Figure 1. VoIP Media Gateway system logical flow.

processor IXS1000 [1]. As shown in Figure 2, the
IXS1000 incorporates multiple signal processing cores, a
control processing core, and a high-speed internal bus, and
a memory movement engine. The signal processing cores
have tightly-coupled RISC and DSP resources, and local
instruction and data memories. The signal processing
cores are further assisted by global memory on the chip.

Figure 2. Intel IXS1000 Signal Processor Block
Diagram.

Factors affecting the number of channels supported in
a voice processing component of a media gateway system
are the MHz and memory requirements for each channel.
In IXS1000 the on-chip global memory SRAM stores the
firmware including, program, tables, and state information
data for all channels. Among various voice processing

IV - 1650-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡

tasks is network echo cancellation. The network echo
canceller requires a large amount of state memory per
channel to be stored in the global memory. This is
especially true when echo cancellers for echo paths with
long impulse responses (>= 64 ms) are desired [3].

Generally, the voice processing per channel is
performed every frame. A frame is a time interval used to
generate a voice packet to be transferred to the IP network
and vice-versa. The frame size is typically dictated by the
voice compression used. For sample-based voice
compression methods the frame size can be arbitrarily
chosen. In this paper, we assume a frame size of 10 ms or
80 samples. The state memory required by the echo
canceller to perform its corresponding function is
transferred via direct memory access (DMA) mechanisms
into and out of the signal processing cores from and to the
global memory for every frame. Typically, a DSP device
can be configured to perform voice and packet processing
for multiple VoIP channels and each VoIP channel can
have its own persistent state memory storage in the global
memory. Accordingly, the number of VoIP channels that
can be processed depends, among other factors, on the
state memory requirements of the echo canceller. Thus,
higher channel densities can be achieved if the state
memory requirements of the echo canceller can be reduced
without significant quality impairment of voice signals.

A simplified block diagram of a network echo
canceller is shown in Figure 3. In general, a substantial
portion of the state memory requirements of an echo
canceller is allocated for storing coefficients of the
adaptive filter h(n). For example, for a 128 ms echo
canceller the filter length is 1024, and the state memory
required to store the coefficients with 16-bit precision is 2
Kbytes. In this paper, we describe a new method to
reduce the memory requirements for storing the
coefficients of the echo canceller by a factor of 2 to 4. We
also show that the new method provides faster
convergence rate than the traditional normalized least
mean square (NLMS) [4] algorithm.

2. A MEMORY EFFICIENT ECHO
CANCELLATION ALGORITHM

As a frame of voice samples for a particular channel is
scheduled for echo cancellation, the echo canceller
coefficients corresponding to that channel are first
transferred from the global memory to local memory. An
adaptation algorithm that minimizes the echo, e.g,. NLMS,
is run every sample. Thus the coefficients get updated
every sample in the local memory. At the end of the
frame, the coefficients are transferred from local memory
to global memory, and the processing for next channel can
the data compression of the echo canceller coefficients is
performed. Thus the memory requirements for a 1024-tap

h (n)H y b r id

+
-

S in

R in
(F a r in)

R o u t

S o u t

C
an

ce
lle

d
P

at
h

E c h o C a n c e l le r

Figure 3. Simplified block diagram of a network echo
canceller.

echo canceller coefficients are 2 Kbytes in local memory
but significantly lower when stored in the global memory.
When the same channel’s next frame is scheduled to be
processed by the signal processing cores, decompression
of the data is performed, so that the filter coefficients are
recovered in 16-bit precision. The trick is to minimize the
loss of precision in the most important taps of the echo
canceller. The most important taps of an echo canceller
are the ones with the highest magnitude. Therefore, our
new method aims to retain full precision for the highest
coefficients.
Let us think of the coefficient array as two arrays -- a sign-
bit array and a magnitude array. The magnitude array
requires 15 bits per coefficient. Let us assume that a 50%
reduction in memory requirements is desired. Thus for a
1024-tap echo canceller we will have a bit-quota of 8192
bits per frame or 8 bits per coefficient. Now consider the
magnitude array as a two-dimensional array, row numbers
are taps or coefficients, and column numbers are bits.
Thus, rows are coefficients 0 to 1023 from top to bottom,
and columns are bits 14 to 0 (MSB to LSB) from left to
right. This is a 1024 X 15 array. Note that, we could get
some savings just by throwing away the 0 bits in the left-
side of this array and without incurring any loss! Thus we
code the left-most non-zero MSB position. That is, we
traverse from left top of the array to right bottom of the
array in a zig-zag fashion. Down to bottom, then up to top
and right, then down again, till we hit first 1 bit! The
position of this bit is coded using 4 + log2(TapLength)
bits, i.e., 15 bits in our example. The 4 bits are needed to
specify the column position and log2(TapLength) to
specify the column position. Note that, we just found the
highest-coefficient, we immediately pack this coefficient
with full precision. The number of bits required is given
by the column position coded with 4 bits already. Next we
pack the sign bit corresponding to this coefficient using 1
bit. We also pack 4 coefficients adjacent to the highest
coefficient with the same precision as that of highest
coefficient. Although this might waste a few bits to
specify the precision, it saves bits required to specify the
row position of the coefficients. This improvement is
motivated by the fact that the coefficients next to the echo

IV - 166

➡ ➡

path peak are also high. Once we code these coefficients,
we zero-out its bits in the magnitude array, i.e., this row is
all zeros now. We continue traversing in the same zig-zag
manner and as soon as we hit a 1, we first code the
position of the new 1. Immediately we also code this
coefficient with full precision as required. The position is
coded relative to the previous position. In essence, we are
choosing the strongest coefficients and coding them and
their positions. Also note that we are coding them with
just enough precision and not more and not less. We
continue this process till we either run out of bits (bit-
quota) or reach the right bottom of our two-dimension
array.

The algorithm steps are specified below:
1. n, coefficient index = 0. k, = bit position = 14.
2. Is k-th bit of | h(n)| = 1?
3. If no jump to step 6.
4. Encode n differentially relative to old n (=0

initially). Encode | h(n)| with k bits and sign of
h(n) with 1 bit. Old n n. Set h(n) = 0.

5. Reduce bit quota by the bits used in step 4.
6. If bit quota is zero or less, STOP.
7. n n+1.
8. Is n = Tap length?
9. If no jump to step 2.
10. k k-1.
11. Is k = -1?
12. If no jump to step 2.
13. STOP.
Note that, this method zeros out the spurious

coefficients, i.e., coefficients that are small
(logarithmically). Therefore in case of sparse and quasi-
sparse (dispersion is limited to few milliseconds) the
method increases the convergence rate. In other words,
every frame the small or near-zero coefficients are
adjusted back to zero, thus allowing a faster adjustment of
larger coefficients. This is similar in principle to the
methods where the larger coefficients are given larger
scale factors in order to improve convergence [5],[6],[7].

The savings in memory requirement, and faster
convergence rate, however come at the expense of
increased complexity. Every frame (typically 10 ms or 80
samples) the compression and decompression algorithm is
executed adding to the MHz requirements. The algorithm
presents a trade-off between memory die-cost savings vs.
MHz increase. The algorithm can also be implemented in
silicon, in which case the trade-off is between the memory
and compression/decompression engine die-costs.

3. SIMULATION RESULTS
We compared the results of out new memory efficient
algorithm with the standard NLMS algorithm. Note that,
the coefficient compression/decompression can be
combined with other LMS and affine-projection type
algorithms as well.

The objective of these simulations is to compare the
NLMS and the new memory efficient NLMS algorithms in
the context of network echo canceller application. For our
simulations we use two different echo paths as shown by
their impulse responses in Figure 4. The sparse impulse
response is the echo path model 1 from reference [3] and
represents a single reflection echo. The dispersive
impulse response represents multiple reflections and a
dispersion of approximately 9 ms. This is echo path
model 7 from reference [3]. The experiments use
composite source signal (CSS) as defined in [3] and male
speech signal as far in excitation input signals. The
sampling rate is 8 kHz. Both the echo canceller tap length
and echo path length are 1024 taps.

The compression and decompression of the
coefficients is performed every frame, where the frame
length is 80 samples. We compare results when the new
algorithm provides memory reductions by a factor of 2 and
4.

Figures 6, 7, 8, and 9 compare the misalignment given
by, ||h – h’||/||h|| for the NLMS and the new algorithm. We
can see that the new memory efficient algorithms also
provide faster convergence rate compared to standard
NLMS algorithm. The convergence rate improvement is
even better at higher memory reductions. However, using
very high memory reductions may lead to slower
convergence rate or divergence for highly dispersive echo
paths. The improvement in convergence speed is
consistent across both CSS and speech input signals.

We also confirmed that the algorithm has desirable
echo path tracking properties and faster convergence rate
when echo path changes as shown in Figure 10.

Figure 4. Two impulse responses used in the
simulations (a) single reflection sparse, (b) multiple
reflections dispersive.

IV - 167

➡ ➡

Figure 5 Input far in signals used in the simulations (a)
Composite source signal, and (b) Speech signal.

Figure 6. Misalignment for CSS far in signal and single
reflection sparse impulse response (_) NLMS
algorithm, (_ _) memory efficient NLMS algorithm
with compression by a factor of 2, (_.) memory
efficient NLMS with compression by a factor of 4.

Figure 7. Misalignment for CSS far in signal and
multiple reflection dispersive impulse response: (_)
NLMS algorithm, (_ _) memory efficient NLMS
algorithm with compression by a factor of 2, (_.)
memory efficient NLMS with compression by a factor
of 4.

Figure 8. Misalignment for Speech far in signal, other
parameters are same as Figure 6.

Figure 9. Misalignment for Speech far in signal, other
parameters are same as Figure 7.

Figure 10 Misalignment during echo path change. The
echo path changes from impulse response Fig 4(a) to
Fig 4(b) at 15 seconds. The input is CSS signal.

4. CONCLUSION

We presented a memory efficient echo cancellation
algorithm. This algorithm can reduce the memory
requirements for storing echo canceller coefficients across
frames in a VoIP media gateway by a factor of 2 to 4.
Further the algorithm when combined with standard
NLMS also improves the convergence rate of the echo
canceller over the standard NLMS algorithm.

5. REFERENCES

[1] http://www.intel.com/network/csp/solutions/mediagateway/
[2] Bellamy, J., Digital Telephony, John Wiley & Sons, 2000.
[3] International Telecommunication Union, ITU-T G.168
Standard, 2000.
[4] S. Haykin, Adaptive Filter Theory, Englewood Cliffs, NJ:
Prentice Hall, 1996.
[5] D. L. Duttweiler, “Proportionate normalized least mean
square adaptation in echo cancellers,” IEEE Trans. Speech
Audio Processing, vol. 8, pp. 508-518, Sept. 2000.
[6] S. L. Gay, “An efficient, fast converging adaptive filter for
network echo cancellation,” Proc. Assilomar Conf, Nov. 1998.
[7] J. Benesty and S. L. Gay, “An Improved PNLMS
Algorithm,” Proc. Intl. Conf on Accoustics, Speech, and Signal
Processing, pp. II-1881-II-1884, 2002.

IV - 168

➡ ➠

