
ACOUSTIC ECHO CANCELLATION WITH
ARBITRARY PLAYBACK SAMPLING RATE

Jack W. Stokes and Henrique S. Malvar

Microsoft Research
One Microsoft Way, Redmond, WA 98052, USA

ABSTRACT

This paper introduces a new architecture for implementing
subband acoustic echo cancellation (AEC) with arbitrary
playback sampling rate. Typically, in AEC algorithms for audio
or video conferencing, the sampling rates for the signals played
through the speakers and captured from the microphones are
identical. For speech recognition while playing CD-quality
music and Internet gaming with voice chat, the playback
sampling rate is usually higher than the capture rate. A direct
solution is to apply a sampling rate converter to the playback
signal before feeding it to the AEC, but that is complicated if
many sampling frequencies must be supported. We propose a
more efficient solution for subband AEC: we perform the
sampling rate conversion as a frequency-domain interpolation
that matches the transform lengths of the playback and capture
signals. Results show that the new AEC architecture has a small
computational cost and only a minimal reduction in echo
attenuation.

1. INTRODUCTION

Acoustic echo cancellation (AEC) removes the echo captured by
a microphone when a sound is simultaneously played through
speakers located near the microphone. In the past, many AEC
algorithms have been proposed for telecommunication scenarios
such as videoconferencing and speakerphones [1][2]. Typically,
the sampling rates for the signal captured from the microphone
and the signal played through the speakers are identical and are
dictated by the voice codecs used in the application. For
example, high-end videoconferencing systems use wideband or
super-wideband codecs, with sampling at 16 kHz or 32 kHz,
respectively, while low end, plain old telephone system (POTS)
speakerphones use 8 kHz sampling. However, new scenarios
often require that the playback sampling rate be different (and
usually higher) than the capture sampling rate.

For example, a speech recognition system may capture the
microphone signal at 16 kHz or 22.05 kHz and needs to cancel
the echo from any source played by the computer such as CD
quality music at 44.1 kHz or a DVD audio stream sampled at
48 kHz. A PC-based videoconferencing system needs to cancel
the 44.1 kHz system sounds generated by the computer.

Enabling these new scenarios requires some form of
sampling rate conversion (SRC) to match the playback and
capture sampling rates. A traditional sampling rate converter
based on a polyphase filter structure [3] could be used, for

example, but a high-quality result would require long filters that
would increase the number of computations per sample, and it
would also require additional data buffering structures.
Furthermore, each combination of playback and capture
sampling rates would require a different filter coefficient table.
In this paper we present a more efficient solution in terms of
code and memory size, which is applicable if the AEC uses a
subband structure: after computing the transforms for the capture
and playback signals, the transform for the playback signal is
interpolated in the frequency domain to match the transform size
of the capture signal for the appropriate number of frequency
bins. We show that this approach leads to good results in
practice, especially when the subband decomposition uses the
modulated complex lapped transform (MCLT) [2].

This paper is organized as follows. In Section 2, we describe
the system architecture for the AEC algorithm with arbitrary
playback sampling rate. Performance results are discussed in
Section 3, and conclusions are provided in Section 4.

2. AEC ARCHITECTURE DESCRIPTION

An adaptive subband based AEC system is shown in Fig. 1. The
audio signal to be played out of the speaker, x, with sampling
rate Fx is sent to the digital-to-analog converter (D/A). The
resulting analog signal is then played out through the speakers
and produces an echo at the microphone. In addition to the echo
from the speakers, the audio signal captured by the microphone
is also composed of the desired speech and background noise.

AEC

x

z

Speaker

Microphone

Echo

Desired
Speech

Wall

y

D/A

A/D

Fx

Fy

Background
Noise

Frequency
Domain

Transform

Sample
Rate

Converter

Frequency
Domain

Transform

Figure 1: Acoustic echo cancellation system.

IV - 1530-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡

The analog audio signal from the microphone is then converted
to the digital capture signal y by the analog-to-digital converter
(A/D), which operates at a sampling rate Fy. The processed
microphone signal z has the echo removed by the AEC module.

AEC is often performed using adaptive subband filtering
using transforms such as the fast Fourier transform (FFT) or the
modulated complex lapped transform (MCLT), as shown in
Fig. 1 [2], in which z is a transform-domain output. If the
playback sampling rate Fx matches the capture sampling rate Fy,
then the two frequency-domain transforms can have the same
length, as in [2]. For the general case where Fx Fy we need to
apply an SRC to the playback signal. There are a number of
ways to accomplish that task, including time domain SRC, exact
frequency-domain SRC and interpolated frequency-domain
SRC, which we review next.

2.1 Time-Domain SRC

SRC can be achieved using time-domain techniques based on
multirate filtering [3]. Linear interpolation is the simplest
approach, but it leads to aliasing levels that produce audible
distortion and significantly compromise the AEC performance.
With multirate filtering, every combination of different capture
and playback sampling rates supported by the system must be
handled by either separate polyphase finite impulse response
(FIR) filters, or by a very long polyphase FIR filter that can be
stepped at different increments for the various sampling rates.

2.2 Exact Frequency-Domain SRC

Another approach is to compute the exact frequency domain
transform for each of the playback sampling rates supported by
the system. In a standard frequency domain-sampling approach
[4], sampling rate conversion occurs after the frequency-domain
transform for the signal x in Fig. 1. For example, with a CD-
quality playback signal at sampling rate at 44.1 kHz processed
with 20 millisecond frames, we need an 882-point MCLT, which
can be implemented [5] by a 1764-point FFT. The FFT length is
factorable as 1764 = 2*2*3*3*7*7. Therefore, the 882-point
MCLT could be implemented using the generalized Cooley-
Tukey FFT [6]. To perform SRC in this case where the transform
length exactly matches the number of points in a frame, we
simply discard the frequency domain coefficients for the bands
above the capture sampling rate, when the playback sampling
rate is higher than the capture sampling rate. Likewise, when the
playback sampling rate is lower than the capture sampling rate,
SRC simply includes zero padding the frequency domain bands
of the transformed playback signal up to the length of the
transformed capture signal.

2.3 Interpolated Frequency-Domain SRC

The main disadvantage of the approach above is that it requires
FFTs whose lengths are not easily factorable, leading to more
complex and significantly less efficient implementations. We
now present a new architecture that combines a frequency
domain transform whose length is a power of 2, and a sampling
rate converter using a simple frequency-domain interpolation.
This approach slightly degrades the quality of the AEC
algorithm as compared to the exact frequency domain approach,

but is more efficient for real-time implementation. The new
transform size N̂ is given by

()ˆ 2 ^ log 2()N N= (1)

where N is the exact transform size and n is the ceiling
function of n. Again, we consider the case of CD-quality music
playing at a sampling rate of 44.1 kHz with 20 ms buffers, for
which the size of the exact MCLT transform is 882 and the size
of the new MCLT is 1024. Unlike the 882-point MCLT required
for the exact frequency domain transform, the 1024-point MCLT
can be implemented using 2048-point FFT [5], which will be
much faster than the 1776-point FFT required for the 882-point
MCLT fir the exact frequency domain transform. One issue with
this approach is that the size of the new MCLT window is larger
than the number of samples required for the exact frequency-
domain transform. There are several ways of handling this
mismatch, as listed in Table 1. For completeness we have
included option number 5, even though it performs worse than

the other widowing methods.
After running the longer MCLT on the speaker data x, we

now need to convert the frequency domain subbands to match
the appropriate frequency bin locations of the capture data. We
achieve that via linear interpolation, in the form

() (1) () (1)
X X

X m n m X n m n X n
X X

′ ′∆ ∆′ = + − + − +
∆ ∆

 (2)

where X(n) is the nth frequency bin of the transformed speaker
signal x, X’(m) is the mth frequency bin of the linear
interpolated transform, and ∆X and ∆X’ are the widths of the
frequency bins for the transformed speaker signal and desired
speaker signal (i.e. equivalent to the bin width of the capture
signal), respectively. Higher order interpolation could also be
used, but in the next Section we show that even linear
interpolation as in (2) provides very good results.

3. PERFORMANCE EVALUATION

We now evaluate the performance of the new AEC architecture
using frequency-domain interpolation, in terms of numerical
accuracy and CPU consumption. For these results, the capture
sampling rate is 16 kHz, typical of wideband conferencing, while

Method
Number

Windowing Method Description

1
Exact transform with 1764-point window and
1764 data samples.

2
Interpolate with 2048-point window and 2048
data samples overlapped back in time

3
Interpolate with 2048-point window and 1764
data samples zero padded at the beginning

4
Interpolate with 2048-point window and 1764
data samples zero padded equally at both ends

5
Interpolate with 2048-point window and 1764
data samples zero padded at the end

Table 1: Different methods of interpolating
playback subbands.

IV - 154

➡ ➡

the playback sampling rate is 44.1 kHz, typical of system audio
or CD-quality music playback. We consider only mono playback
in this paper, since stereo playback leads to additional issues,
which we will address in a future paper. Likewise, the capture
signal is also mono.

The captured echo signal is simulated using a transfer
function measured in standard corporate office with approximate
dimensions 10’×10’×8’. The office’s transfer function is first
estimated with the playback and capture sampling rates set at
44.1 kHz. Convolving the music signal with the office’s transfer
function simulates an echo at 44.1 kHz. Next the simulated echo
signal is downsampled via a high-quality polyphase filter to the
desired capture sampling rate of 16 kHz.

In this paper we perform the subband AEC using adaptive
subband filtering and an MCLT-based subband decomposition,
as described in [2] (other subband transforms could be used,
such as those based on oversampled FFT filter banks [3]). In the
following results, the capture signal is processed using a 320-
point MCLT while the playback signal is processed using a
1024-point MCLT for methods 2–4 in Table 1, and a 882-point
MCLT for the exact transform method (method 1 in Table 1).
The complex adaptive filters in each subband are processed
using normalized least mean square (NLMS), as in [2]. We
compare the results based on the echo return loss enhancement
(ERLE), in dB, defined as:

2

10 2

E{ ()}
() 10log

E{ ()}

y n
ERLE n

z n
= (3)

where E{} is the expected value at time sample n. In this paper,
we compute the expected value for non-overlapping length-N
blocks as

{ }
{ }10

var (: 1)
() 10log

var (: 1)

y n n N
ERLE k

z n d n N d

+ −
=

− + − −
 (4)

for the kth block of data where n is the time index at the
beginning of the data block, var{} is the variance of the block of
data, and d represents the processing delay due to the AEC
processing. For the AEC processing with the MCLT, d is equal
to two frames of data (e.g. 640 samples at 16 kHz).

The numerical results provided in Fig. 2 compare the first
four methods given in Table 1. For the results in Figs. 2 and 3,
we set N equal to 5 times the frame size which is 100
milliseconds for the 20 millisecond frames used in this
experiment. We see that the results from all methods are
comparable, so to improve the readability, we next show in
Fig. 3 the difference between ERLE for windowing methods 2–4
and the ERLE for the exact frequency-domain transform.

Since the results in Figs. 2 and 3 show the performance of
the various methods on a short-term time scale, we next seek to
compare the ERLE results based on the statistics of a longer time
scale. Therefore we set N equal to 100 times the frame size (2-
second blocks) in Figs. 4 and 5. Again, we compare the ERLE
for the first four methods in Table 1 in Fig. 5, and the ERLE
differences for windowing methods 2-4 and method 1 in Fig. 6.

As we can see from Figs. 2–5, the exact frequency domain
transform usually provides the highest ERLE, as expected,
although other methods can produce better short-term ERLE
results. Comparing the ERLE results for the various interpolated
window methods, overlapping back in time (method 2) works
best and reduces the ERLE by less than 1.0 dB when compared

to the exact frequency-domain transform (method 1, with an
882-point MCLT). Figures 4 and 5 show that, on average, zero
padding at both ends is worse than using an overlapping window
in time, but performs better than zero padding at the beginning
of the window. This result is due to the fact that more energy in
the signal is preserved by zero padding the tails of the window
than zero padding a longer portion of the signal in the beginning
of the window.

We should emphasize that our interpolated frequency-
domain SRC method does not use an overlap-add or overlap-
save structure, which would be equivalent to a linear time-
invariant filter [3]. We just interpolate the frequency-domain
coefficients within a frame, and thus our interpolation procedure
is a periodically time-varying operator [3], as are the AEC
adaptive filters in Fig. 1 [2]. Thus, the small ERLE reduction is

0 2 4 6 8 10 12 14 16
0

5

10

15

20

25

Time, seconds

E
R

LE
, d

B

Exact
Overlapped In Time
Zero Pad At Beginning
Zero Pad Both Ends

Figure 2: ERLE for methods 1–4 in Table 1,
averaged over 100 ms blocks.

0 2 4 6 8 10 12 14 16
−6

−5

−4

−3

−2

−1

0

1

2

3

Time, seconds

E
R

LE
, d

B

Overlapped In Time
Zero Pad At Beginning
Zero Pad Both Ends

Figure 3: ERLE differences between methods
2–4 and the exact transform used in method 1,
averaged over 100 ms blocks.

IV - 155

➡ ➡

caused by the additional aliasing of our SRC. In practice, audible
quality is also very important, and listening test have shown that
our interpolated frequency-domain SRC method does not
introduce any audible artifacts, especially under the presence of
the mild artifacts caused by the nonlinear spectral attenuation
that usually follows the adaptive AEC filters [2].

Our main motivation for proposing the interpolated
frequency-domain SRC method was to reduce the code
complexity and memory requirements to perform SRC for a
variety of supported sampling frequencies. However,
computational complexity increases with frequency-domain
SRC. Thus, in Table 2 we compare CPU consumption for the
various windowing methods. The results are all measured from
C-language implementations running on an 800 MHz Intel®

Pentium III. For reference, we included the CPU usage of an
AEC system that does not need SRC, by running it with a

16 kHz playback signal; that requires 3.9% of the CPU. For a
44.1 kHz playback signal, we see that running the exact
transform consumes 135% of the CPU, while our interpolated
frequency-domain SRC method requires 5.9% of the CPU. So,
our method leads to only a modest increase in CPU load
compared to the bandlimited playback, while the exact transform
is prohibitively expensive.

4. CONCLUSION

In this paper, we have developed a new frequency domain
interpolation architecture which allows AEC to be performed
while a full bandwidth signal is played through the speakers. The
new architecture allows AEC to be run with many new scenarios
including speech recognition, internet gaming, and CD quality
music playback. The results indicate that although none of the
interpolated windows result in a perfect reconstruction filter
bank, overlapping the data backwards in time is preferable to any
type of zero padding. The new algorithm is extremely fast and
can be implemented in real time. Furthermore, the new algorithm
only introduces a small degradation in the ERLE compared to
using the exact transform.

REFERENCES

[1] C. Breining et. al., “Acoustic echo control. An application
of very-high-order filters”, IEEE Signal Processing
Magazine, vol. 16, pp. 42–69, July 1999.

[2] H. S. Malvar, “A Modulated Complex Lapped Transform
and Its Applications to Audio Processing”, Proc. ICASSP,
pp. 1421–1424, March 1999.

[3] R. E. Crochiere and L. R. Rabiner, Multirate Digital Signal
Processing. Englewood Cliffs, NJ: Prentice-Hall, 1983.

[4] P. J. S. G. Ferreira, “Interpolation in the time and frequency
domains,” IEEE Signal Processing Letters, vol. 3, pp. 176–
178, June 1996.

[5] H. S. Malvar, “Fast algorithm for the modulated complex
lapped transform”, IEEE Signal Processing Letters, vol. 10,
pp. 8–10, Jan. 2003.

[6] R. E. Blahut, Fast Algorithms for Digital Signal
Processing. Reading, MA: Addison-Wesley, 1987.

[7] M. M. Sondhi, D. R. Morgan, and J. L. Hall, “Stereophonic
acoustic echo cancellation; an overview of the fundamental
problem,” IEEE Signal Processing Letters, vol. 2, pp. 148–
151, Aug. 1995.

2 4 6 8 10 12 14
11

12

13

14

15

16

17

18

19

20

Time, seconds

E
R

LE
, d

B

Exact
Overlapped In Time
Zero Pad At Beginning
Zero Pad Both Ends

Figure 4: ERLE for methods 1–4 in Table 1
averaged over blocks of 2 s.

2 4 6 8 10 12 14
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Time, seconds

E
R

LE
, d

B

Overlapped In Time
Zero Pad At Beginning
Zero Pad Both Ends

Figure 5: ERLE differences between methods
2–4 and the exact transform used in method 1,
averaged over blocks of 2 s.

Method CPU Utilization
Exact transform-domain
interpolation

135%

Playback signal at 16 kHz, no
interpolation

3.9%

Playback signal at 44.1 kHz,
MCLT-domain interpolated SRC

5.9%

Table 2: Computational complexity of the
proposed MCLT-domain SRC vs. the exact
transform method.

IV - 156

➡ ➠

