
ACOUSTIC ECHO CANCELLATION WITH 
ARBITRARY PLAYBACK SAMPLING RATE 

Jack W. Stokes and Henrique S. Malvar 

Microsoft Research 
One Microsoft Way, Redmond, WA 98052, USA 

ABSTRACT 

This paper introduces a new architecture for implementing 
subband acoustic echo cancellation (AEC) with arbitrary 
playback sampling rate. Typically, in AEC algorithms for audio 
or video conferencing, the sampling rates for the signals played 
through the speakers and captured from the microphones are 
identical. For speech recognition while playing CD-quality 
music and Internet gaming with voice chat, the playback 
sampling rate is usually higher than the capture rate. A direct 
solution is to apply a sampling rate converter to the playback 
signal before feeding it to the AEC, but that is complicated if 
many sampling frequencies must be supported. We propose a 
more efficient solution for subband AEC: we perform the 
sampling rate conversion as a frequency-domain interpolation 
that matches the transform lengths of the playback and capture 
signals. Results show that the new AEC architecture has a small 
computational cost and only a minimal reduction in echo 
attenuation. 

1. INTRODUCTION 

Acoustic echo cancellation (AEC) removes the echo captured by 
a microphone when a sound is simultaneously played through 
speakers located near the microphone. In the past, many AEC 
algorithms have been proposed for telecommunication scenarios 
such as videoconferencing and speakerphones [1][2]. Typically, 
the sampling rates for the signal captured from the microphone 
and the signal played through the speakers are identical and are 
dictated by the voice codecs used in the application. For 
example, high-end videoconferencing systems use wideband or 
super-wideband codecs, with sampling at 16 kHz or 32 kHz, 
respectively, while low end, plain old telephone system (POTS) 
speakerphones use 8 kHz sampling. However, new scenarios 
often require that the playback sampling rate be different (and 
usually higher) than the capture sampling rate. 

For example, a speech recognition system may capture the 
microphone signal at 16 kHz or 22.05 kHz and needs to cancel 
the echo from any source played by the computer such as CD 
quality music at 44.1 kHz or a DVD audio stream sampled at 
48 kHz. A PC-based videoconferencing system needs to cancel 
the 44.1 kHz system sounds generated by the computer. 

Enabling these new scenarios requires some form of 
sampling rate conversion (SRC) to match the playback and 
capture sampling rates. A traditional sampling rate converter 
based on a polyphase filter structure [3] could be used, for 

example, but a high-quality result would require long filters that 
would increase the number of computations per sample, and it 
would also require additional data buffering structures. 
Furthermore, each combination of playback and capture 
sampling rates would require a different filter coefficient table. 
In this paper we present a more efficient solution in terms of 
code and memory size, which is applicable if the AEC uses a 
subband structure: after computing the transforms for the capture 
and playback signals, the transform for the playback signal is 
interpolated in the frequency domain to match the transform size 
of the capture signal for the appropriate number of frequency 
bins. We show that this approach leads to good results in 
practice, especially when the subband decomposition uses the 
modulated complex lapped transform (MCLT) [2]. 

This paper is organized as follows. In Section 2, we describe 
the system architecture for the AEC algorithm with arbitrary 
playback sampling rate. Performance results are discussed in 
Section 3, and conclusions are provided in Section 4.

2. AEC ARCHITECTURE DESCRIPTION 

An adaptive subband based AEC system is shown in Fig. 1. The 
audio signal to be played out of the speaker, x, with sampling 
rate Fx is sent to the digital-to-analog converter (D/A). The 
resulting analog signal is then played out through the speakers 
and produces an echo at the microphone. In addition to the echo 
from the speakers, the audio signal captured by the microphone 
is also composed of the desired speech and background noise. 
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Figure 1: Acoustic echo cancellation system.
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The analog audio signal from the microphone is then converted 
to the digital capture signal y by the analog-to-digital converter 
(A/D), which operates at a sampling rate Fy. The processed 
microphone signal z has the echo removed by the AEC module. 

AEC is often performed using adaptive subband filtering 
using transforms such as the fast Fourier transform (FFT) or the 
modulated complex lapped transform (MCLT), as shown in 
Fig. 1 [2], in which z is a transform-domain output. If the 
playback sampling rate Fx matches the capture sampling rate Fy,
then the two frequency-domain transforms can have the same 
length, as in [2]. For the general case where Fx  Fy we need to 
apply an SRC to the playback signal. There are a number of 
ways to accomplish that task, including time domain SRC, exact 
frequency-domain SRC and interpolated frequency-domain 
SRC, which we review next. 

2.1 Time-Domain SRC 

SRC can be achieved using time-domain techniques based on 
multirate filtering [3]. Linear interpolation is the simplest 
approach, but it leads to aliasing levels that produce audible 
distortion and significantly compromise the AEC performance. 
With multirate filtering, every combination of different capture 
and playback sampling rates supported by the system must be 
handled by either separate polyphase finite impulse response 
(FIR) filters, or by a very long polyphase FIR filter that can be 
stepped at different increments for the various sampling rates. 

2.2 Exact Frequency-Domain SRC 

Another approach is to compute the exact frequency domain 
transform for each of the playback sampling rates supported by 
the system. In a standard frequency domain-sampling approach 
[4], sampling rate conversion occurs after the frequency-domain 
transform for the signal x in Fig. 1. For example, with a CD-
quality playback signal at sampling rate at 44.1 kHz processed 
with 20 millisecond frames, we need an 882-point MCLT, which 
can be implemented [5] by a 1764-point FFT. The FFT length is 
factorable as 1764 = 2*2*3*3*7*7. Therefore, the 882-point 
MCLT could be implemented using the generalized Cooley-
Tukey FFT [6]. To perform SRC in this case where the transform 
length exactly matches the number of points in a frame, we 
simply discard the frequency domain coefficients for the bands 
above the capture sampling rate, when the playback sampling 
rate is higher than the capture sampling rate. Likewise, when the 
playback sampling rate is lower than the capture sampling rate, 
SRC simply includes zero padding the frequency domain bands 
of the transformed playback signal up to the length of the 
transformed capture signal. 

2.3 Interpolated Frequency-Domain SRC 

The main disadvantage of the approach above is that it requires 
FFTs whose lengths are not easily factorable, leading to more 
complex and significantly less efficient implementations. We 
now present a new architecture that combines a frequency 
domain transform whose length is a power of 2, and a sampling 
rate converter using a simple frequency-domain interpolation. 
This approach slightly degrades the quality of the AEC 
algorithm as compared to the exact frequency domain approach, 

but is more efficient for real-time implementation. The new 
transform size  N̂  is given by 

( )ˆ 2 ^ log 2( )N N=  (1) 

where N is the exact transform size and n   is the ceiling 
function of n. Again, we consider the case of CD-quality music 
playing at a sampling rate of 44.1 kHz with 20 ms buffers, for 
which the size of the exact MCLT transform is 882 and the size 
of the new MCLT is 1024. Unlike the 882-point MCLT required 
for the exact frequency domain transform, the 1024-point MCLT 
can be implemented using 2048-point FFT [5], which will be 
much faster than the 1776-point FFT required for the 882-point 
MCLT fir the exact frequency domain transform. One issue with 
this approach is that the size of the new MCLT window is larger 
than the number of samples required for the exact frequency-
domain transform. There are several ways of handling this 
mismatch, as listed in Table 1. For completeness we have 
included option number 5, even though it performs worse than 

the other widowing methods.  
After running the longer MCLT on the speaker data x, we 

now need to convert the frequency domain subbands to match 
the appropriate frequency bin locations of the capture data. We 
achieve that via linear interpolation, in the form 

( ) ( 1) ( ) ( 1)
X X

X m n m X n m n X n
X X

′ ′∆ ∆′ = + − + − +
∆ ∆

 (2) 

where X(n) is the nth frequency bin of the transformed speaker 
signal x, X’(m) is the mth frequency bin of the linear 
interpolated transform, and ∆X and ∆X’ are the widths of the 
frequency bins for the transformed speaker signal and desired 
speaker signal (i.e. equivalent to the bin width of the capture 
signal), respectively. Higher order interpolation could also be 
used, but in the next Section we show that even linear 
interpolation as in (2) provides very good results. 

3. PERFORMANCE EVALUATION 

We now evaluate the performance of the new AEC architecture 
using frequency-domain interpolation, in terms of numerical 
accuracy and CPU consumption. For these results, the capture 
sampling rate is 16 kHz, typical of wideband conferencing, while 

Method 
Number 

Windowing Method Description 

1
Exact transform with 1764-point window and 
1764 data samples. 

2
Interpolate with 2048-point window and 2048 
data samples overlapped back in time

3
Interpolate with 2048-point window and 1764 
data samples zero padded at the beginning 

4
Interpolate with 2048-point window and 1764 
data samples zero padded equally at both ends 

5
Interpolate with 2048-point window and 1764 
data samples zero padded at the end 

Table 1: Different methods of interpolating 
playback subbands.
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the playback sampling rate is 44.1 kHz, typical of system audio 
or CD-quality music playback. We consider only mono playback 
in this paper, since stereo playback leads to additional issues, 
which we will address in a future paper. Likewise, the capture 
signal is also mono. 

The captured echo signal is simulated using a transfer 
function measured in standard corporate office with approximate 
dimensions 10’×10’×8’. The office’s transfer function is first 
estimated with the playback and capture sampling rates set at 
44.1 kHz. Convolving the music signal with the office’s transfer 
function simulates an echo at 44.1 kHz. Next the simulated echo 
signal is downsampled via a high-quality polyphase filter to the 
desired capture sampling rate of 16 kHz.  

In this paper we perform the subband AEC using adaptive 
subband filtering and an MCLT-based subband decomposition, 
as described in [2] (other subband transforms could be used, 
such as those based on oversampled FFT filter banks [3]). In the 
following results, the capture signal is processed using a 320- 
point MCLT while the playback signal is processed using a 
1024-point MCLT for methods 2–4 in Table 1, and a 882-point 
MCLT for the exact transform method (method 1 in Table 1). 
The complex adaptive filters in each subband are processed 
using normalized least mean square (NLMS), as in [2]. We 
compare the results based on the echo return loss enhancement 
(ERLE), in dB, defined as: 

2

10 2

E{ ( )}
( ) 10log

E{ ( )}

y n
ERLE n

z n
=  (3) 

where E{} is the expected value at time sample n. In this paper, 
we compute the expected value for non-overlapping length-N
blocks as 

{ }
{ }10

var ( : 1)
( ) 10log

var ( : 1)

y n n N
ERLE k

z n d n N d

+ −
=

− + − −
 (4) 

for the kth block of data where n is the time index at the 
beginning of the data block, var{} is the variance of the block of 
data, and d represents the processing delay due to the AEC 
processing. For the AEC processing with the MCLT, d is equal 
to two frames of data (e.g. 640 samples at 16 kHz). 

The numerical results provided in Fig. 2 compare the first 
four methods given in Table 1. For the results in Figs. 2 and 3, 
we set N equal to 5 times the frame size which is 100 
milliseconds for the 20 millisecond frames used in this 
experiment. We see that the results from all methods are 
comparable, so to improve the readability, we next show in 
Fig. 3 the difference between ERLE for windowing methods 2–4 
and the ERLE for the exact frequency-domain transform. 

Since the results in Figs. 2 and 3 show the performance of 
the various methods on a short-term time scale, we next seek to 
compare the ERLE results based on the statistics of a longer time 
scale. Therefore we set N equal to 100 times the frame size (2-
second blocks) in Figs. 4 and 5. Again, we compare the ERLE 
for the first four methods in Table 1 in Fig. 5, and the ERLE 
differences for windowing methods 2-4 and method 1 in Fig. 6. 

As we can see from Figs. 2–5, the exact frequency domain 
transform usually provides the highest ERLE, as expected, 
although other methods can produce better short-term ERLE 
results. Comparing the ERLE results for the various interpolated 
window methods, overlapping back in time (method 2) works 
best and reduces the ERLE by less than 1.0 dB when compared 

to the exact frequency-domain transform (method 1, with an 
882-point MCLT). Figures 4 and 5 show that, on average, zero 
padding at both ends is worse than using an overlapping window 
in time, but performs better than zero padding at the beginning 
of the window.  This result is due to the fact that more energy in 
the signal is preserved by zero padding the tails of the window 
than zero padding a longer portion of the signal in the beginning 
of the window. 

We should emphasize that our interpolated frequency-
domain SRC method does not use an overlap-add or overlap-
save structure, which would be equivalent to a linear time-
invariant filter [3]. We just interpolate the frequency-domain 
coefficients within a frame, and thus our interpolation procedure 
is a periodically time-varying operator [3], as are the AEC 
adaptive filters in Fig. 1 [2]. Thus, the small ERLE reduction is 
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Figure 2: ERLE for methods 1–4 in Table 1, 
averaged over 100 ms blocks.
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Figure 3: ERLE differences between methods 
2–4 and the exact transform used in method 1, 
averaged over 100 ms blocks.
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caused by the additional aliasing of our SRC. In practice, audible 
quality is also very important, and listening test have shown that 
our interpolated frequency-domain SRC method does not 
introduce any audible artifacts, especially under the presence of 
the mild artifacts caused by the nonlinear spectral attenuation 
that usually follows the adaptive AEC filters [2]. 

Our main motivation for proposing the interpolated 
frequency-domain SRC method was to reduce the code 
complexity and memory requirements to perform SRC for a 
variety of supported sampling frequencies. However, 
computational complexity increases with frequency-domain 
SRC. Thus, in Table 2 we compare CPU consumption for the 
various windowing methods. The results are all measured from 
C-language implementations running on an 800 MHz Intel®

Pentium III. For reference, we included the CPU usage of an 
AEC system that does not need SRC, by running it with a 

16 kHz playback signal; that requires 3.9% of the CPU. For a 
44.1 kHz playback signal, we see that running the exact 
transform consumes 135% of the CPU, while our interpolated 
frequency-domain SRC method requires 5.9% of the CPU. So, 
our method leads to only a modest increase in CPU load 
compared to the bandlimited playback, while the exact transform 
is prohibitively expensive.  

4. CONCLUSION 

In this paper, we have developed a new frequency domain 
interpolation architecture which allows AEC to be performed 
while a full bandwidth signal is played through the speakers. The 
new architecture allows AEC to be run with many new scenarios 
including speech recognition, internet gaming, and CD quality 
music playback. The results indicate that although none of the 
interpolated windows result in a perfect reconstruction filter 
bank, overlapping the data backwards in time is preferable to any 
type of zero padding. The new algorithm is extremely fast and 
can be implemented in real time. Furthermore, the new algorithm 
only introduces a small degradation in the ERLE compared to 
using the exact transform. 
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Figure 4: ERLE for methods 1–4 in Table 1 
averaged over blocks of 2 s.
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Figure 5: ERLE differences between methods 
2–4 and the exact transform used in method 1, 
averaged over blocks of 2 s.

Method CPU Utilization 
Exact transform-domain 
interpolation 

135% 

Playback signal at 16 kHz, no 
interpolation 

3.9% 

Playback signal at 44.1 kHz,  
MCLT-domain interpolated SRC 

5.9% 

Table 2: Computational complexity of the 
proposed MCLT-domain SRC vs. the exact 
transform method.
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