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ABSTRACT 

We present an improved adaptive echo cancellation 

algorithm designed for use with sparse echo path impulse 

responses such as arise from packet-switched networks. 

The new approach implicitly segments the impulse 

response into ‘active’ and ‘inactive’ regions, and employs 

different proportionate updating in each region. An 

efficient partial updating scheme is then formulated for 

the new algorithm. Evaluation results are presented to 

compare the new algorithm against three existing methods 

in terms of convergence and computational complexity. 

The results show that the new algorithm outperforms the 

best existing technique and has lower complexity. 

1. INTRODUCTION 

Telephony over packet-switched networks offers many 

advantages and is continuing to grow in interest for both 

end-users and network providers. Particular challenges 

arise in terms of network echo cancellation when 

traditional telephony equipment is connected to the 

packet-switched network using, for example, IP voice 

gateway interfaces [1]. The echo path impulse response in 

such cases typically exhibits an ‘active’ region and an 

unknown bulk delay due to encoding, network 

propagation and jitter buffer delays [2]. The ‘active’ 

region corresponds to the hybrid impulse response and is 

typically up to 12ms in duration. The presence of the 

unknown bulk delay due to the packet-switched network 

results in the need for cancellation of echoes up to 

typically 128ms duration. However, outside the ‘active’ 

region the impulse response is close to zero magnitude 

and therefore can be considered sparse. Classical adaptive 

algorithms such as the Normalized Least Mean Square 

(NLMS) algorithm [10] normally perform relatively 

poorly on such sparse echo paths impulse responses. This 

is caused by (i) slow convergence rate of such algorithms 

for long impulse responses and (ii) poor levels of final 

mean square error (MSE) due to coefficient noise in the 

‘inactive’ region. 

    Several approaches to network echo cancellation for 

sparse echo paths have been proposed including the 

Proportionate Normalized Least Mean Square (PNLMS) 

algorithm [3] and improved versions (PNLMS++, 

IPNLMS) [4, 5]. Block-based partial update methods such 

as [9] have also been proposed. All these algorithms are 

well suited to operate on sparse echo path impulse 

responses and give improved performance compared to 

NLMS. Our aim here is to optimize adaptation further, 

exploiting the specific nature of the responses, by 

implicitly segmenting them into ‘active’ regions 

containing the hybrid response and ‘inactive’ regions 

representing pre- or post- delay. 

    In this paper, we begin by briefly reviewing PNLMS 

approaches in Sections 2.1 and 2.2. Section 2.3 describes 

our new algorithm, IIPNLMS, which uses an adaptation 

scheme based on PNLMS and modifies its tap-update 

operation depending on whether the tap in question is 

within the ‘active’ or ‘inactive’ (bulk delay) region of the 

echo path impulse response. The identification of the 

‘active’ and ‘inactive’ regions is performed implicitly 

within the adaptation. Subsequently, we consider the 

efficient implementation of our algorithm and develop an 

efficient partial update version of IIPNLMS employing 

the recently proposed short-sort M-Max procedure [8]. 

Simulation results are presented to compare the 

performance of the new algorithm with three existing 

algorithms for echo cancellation using a sparse response 

from a real hybrid. 

2. ADAPTIVE ESTIMATION OF SPARSE 

SYSTEMS FOR ECHO CANCELLATION 

The PNLMS algorithm was proposed for echo 

cancellation of sparse systems in, for example, packet 

switched networks [3]. The update procedure is described 

by the following equations: 
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where, ( )nx denotes the L-by-1 excitation vector of the 

tap inputs ( ) ( ) ( ) 1 1
T

x n x n x n L− − + , in which 

( )x n is far-end signal, L is the length of the adaptive filter 

and n is the time index. The vector ( )ˆ nw denotes the 

estimated echo path ( ) ( ) ( )0 1
ˆ ˆ ˆ

T

k Lw n w n w n− , in 

which k is the coefficient number. The PNLMS update 

differs from the NLMS update only in the presence of G,

so that the adaptive step size varies for each tap and is 

effectively proportional to the coefficient absolute 

magnitude. It has been shown in [3, 4], that the advantage 

of the PNLMS algorithm is that it exhibits fast initial 

convergence compared to the NLMS algorithm for sparse 

impulse responses. However, the rate of convergence can 

slow down after an initial period as illustrated in Fig. 2 

and Fig. 3 because of the effective scaling of µ by the 

coefficient absolute magnitude. 

    An enhancement of this algorithm, IPNLMS, was 

proposed in [5]. IPNLMS is a combination of the PNLMS 

and NLMS update terms with the relative significance of 

each controlled by a parameter α . The difference from 

PNLMS in the update procedure is: 
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The update is equivalent to the NLMS update whenα = –

1 and the PNLMS update when α = 1. In practice, good 

choices forα are 0 or –0.5 [5]. It has been shown in [5] 

that the IPNLMS algorithm has faster initial convergence 

than NLMS and at the same time, it has the same benefit 

in terms of final MSE and misalignment performance after 

the initialization period. However, IPNLMS fails to match 

the fast initial convergence of the PNLMS algorithm for 

typical choices of the value ofα .

Here, we introduce an improved IPNLMS 

(IIPNLMS) algorithm. The objective is to derive a rule to 

locate the ‘active’ portion of the echo path in order to 

further improve performance. In IPNLMS, the 

parameter α is fixed for the whole echo path. In our 

improved version, we allow α  to vary as: 
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where, ( )'

max
g n is the maximal value of all the weights of 

coefficients calculated from the PNLMS algorithm 

and γ is the parameter to control the threshold in order to 

locate the ‘active’ portion. When the weight 

( )'

kg n corresponding to the thk coefficient is larger than 

the threshold ( )'

max
g nγ × , this coefficient is determined 

to be in the ‘active’ portion and kα is equal to 1α .

Contrarily, the coefficient is considered to be in the 

‘inactive’ portion if its weight is less than the threshold 

and 
kα  is then set equal to 2α . The 

parameters γ , 1α and 2α can be determined 

experimentally. It can be observed that kα classifies the 

echo path as ‘active’ or ‘inactive’ as shown in Fig. 1. 

Fig. 1. A sparse hybrid echo path (a) the sparse impulse response 

(b) the value of kα

Given this classification, IIPNLMS appears a weighted 

combination of NLMS and PNLMS such that PNLMS is 

more strongly weighted on the ‘inactive’ portion of the 

echo path and NLMS is chiefly responsible for 

convergence on the ‘active’ portion. The motivation for 

this approach is to exploit the advantages of both 

algorithms according to the nature of different regions of 

the impulse responses. Hence, the update term for weights 

is done with 1α  of negative value and 2α  of positive 

value so that: 

                   ( ) ( )'1 1

2 2

k k
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    We wish to compare the NLMS, PNLMS, IPNLMS and 

IIPNLMS algorithms. In simulations, we use the sparse 

hybrid echo path with length 512 as shown in Fig. 1 (a) 

and Gaussian white noise input signal with signal-to-noise 

ratio of 30 dB. The parameter settings are chosen as in 

[5]: µ =0.2, ρ =0.01, δ =0.01, NLMSδ = 2

xσ ,

PNLMSδ = NLMSδ /L, IPNLMSδ = NLMSδ /2L, IIPNLMSδ = NLMSδ /2L,

α =0. Good choices for the parameters γ , 1α and 2α  are: 

γ =0.1, 1α =-0.5 and 2α =0.5. Fig. 2 and Fig. 3 compare 

the normalized MSE (NMSE) and misalignment of the 

four algorithms respectively.  
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Fig. 2. NMSE of NLMS, PNLMS, IPNLMS and IIPNLMS with 

a white noise input

Fig. 3. Misalignment of NLMS, PNLMS, IPNLMS and 

IIPNLMS with a white noise input  

It can be observed that NLMS and IPNLMS converge 

slower than PNLMS by, at some times more than 10dB, 

while IPNLMS has better performance and takes more 

advantage of PNLMS for initialization period. After this 

period, PNLMS converges more slowly than NLMS and 

IPNLMS while IIPNLMS still sustains a faster 

convergence rate and final MSE and misalignment 

performance. Hence, IIPNLMS has achieved a superior 

performance for echo cancellation with sparse echo path 

impulse responses. 

    

3. EFFICIENT PARTIAL UPDATING 

In the M-MAX NLMS (MMNLMS) algorithm [6, 7], the 

adaptive filter only adjusts the coefficients associated with 

the M largest value of ( )nx . The update equation is: 
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In has been shown [6, 7] that the MMNLMS algorithm 

has almost as good performance as the NLMS algorithm 

in terms of convergence rate, final MSE and misalignment 

with 
2

L
M = . However it suffers from a sorting process 

computational overhead that reduces the advantages of 

partial updating. 

    The Short-sort M-MAX NLMS (SMNLMS) algorithm 

addresses this problem by introducing the short-sort 

procedure [8]. This algorithm divides the echo path into 

two regions. In region 1, the number of the taps is equal to 

S (<L) and all the taps are updated. In region 2, the 

number of taps is equal to L-S and a partial update is 

performed using an efficient approximation of the 

MMNLMS algorithm [8]. 
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where ( )kf n  is updated if (n mod S) =0 using  
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It has been shown that SMNLMS has successfully 

maintained the advantages of MMNLMS but with very 

low computational overhead in sorting procedure [8]. 

    The IIPNLMS algorithm has achieved good 

performance for sparse echo cancellation but increases the 

computational complexity by about a factor of 2 

compared to NLMS. Hence, we introduce the short-sort 

partial update procedure into the IIPNLMS algorithm to 

reduce its complexity. The update structure for the 

combined algorithm IIP-SMNLMS is: 

meaning that first the weight matrix G is updated as in 

IIPNLMS and then SMNLMS is responsible for selecting 

the subset of the coefficient of the echo path followed by 

the updating. The update equation corresponding to (13) 

is modified to give 
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   We now wish to compare the NLMS, IPNLMS, 

IIPNLMS and IIP-SMNLMS algorithms. In simulations, 

we use the sparse hybrid echo path as shown on Fig. 1 (a) 

with length 512 and a real speech input signal with signal-

IIP SMNLMS 
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to-noise rate of 39 dB. The parameter settings chosen are 

the same with the above simulation but with µ of 0.5. Fig. 

4 and Fig. 5 compare the NMSE and misalignment of the 

four algorithms respectively. 

Fig. 4. NMSE of NLMS, IPNLMS, IIPNLMS and IIP-SMNLMS 

with speech signal input  

Fig. 5. Misalignment of NLMS, IPNLMS, IIPNLMS and IIP-

SMNLMS with speech signal input 

It can be observed that the IIP-SMNLMS algorithm has    

maintained the advantage of IIPNLMS over NLMS and 

IPNLMS while it reduces the computational complexity 

of IIPNLMS by about 25% due to the partial updating. 

    The comparison in computational complexity among 

the NLMS, SMNLMS, PNLMS, IPNLMS, IIPNLMS and 

IIP-SMNLMS algorithm is shown in Table 1, in which Cc 

means computational complexity based on the number of 

multiplications in a direct implementation. It can be seen 

that IIP-SMNLMS is 50% more complex than NLMS but 

with faster convergence rate and lower complexity than 

IPNLMS. 

Algorithm Cc Algorithm Cc Algorithm Cc 

NLMS 2L SMNLMS 1.5L PNLMS 3L 

IPNLMS 4L IIPNLMS 4L IIP-SMNLMS 3L 

Table 1. Comparison in computational complexity 

4. DISCUSSIONS AND CONCLUSION 

This paper has presented the new IIPNLMS algorithm for 

echo cancellation with sparse echo path impulse responses 

as found typically in telephony systems employing 

packet-switched networks. The new algorithm uses 

proportionate tap updates as in PNLMS and IPNLMS but 

also makes use of different updating schemes depending 

on whether the tap in question is within the ‘active’ or 

‘inactive’ regions of the echo path impulse response, 

where these regions are determined implicitly within the 

adaptation. An efficient short-sort partial updating scheme 

has also been presented for IIPNLMS. Evaluation results 

for echo cancellation with a real sparse echo path have 

shown that IIPNLMS outperforms IPNLMS in terms of 

convergence for both noise and speech input signals. The 

efficient partial updating scheme has been shown to 

effectively reduce the computational complexity of 

IIPNLMS without any significant degradation in 

performance. 
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