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ABSTRACT

This paper presents a novel acoustic echo canceller structure 

based on combining the Filtered-X LMS algorithm with an LPC-

based speech coder for use in videoconferencing and VoIP.  The 

algorithm updates coefficients using filtered versions of the 

input and error signals obtained by directly tapping the short-

term excitation signal from the speech decoder, and by filtering 

the error signal with a bank of FIR decorrelation filters 

constructed from the LPC synthesis filter coefficients.  The 

proposed algorithm was implemented using ITU G.729, and 

simulation results with 2000-tap room impulse responses show a 

faster and more constant rate of convergence than NLMS using 

speech input signals and an average 10 dB greater ERLE 

observed during convergence. 

1. INTRODUCTION 

A key requirement in Voice-over-Internet-Protocol (VoIP) and 

videoconferencing applications is the ability to transmit toll-

quality speech at very low bit rates.  This requirement is 

satisfied by the use of code excited linear prediction (CELP) 

based speech compression standards such as ITU G.729 and the 

more recent ITU G.722.2 [1], [2].  In such applications, speech 

signals are typically compressed and decompressed at the 

interface between a communications network and IP-enabled 

handsets, desktop speakers and microphones, and 

videoconferencing room equipment.  However, such systems are 

still subject to the problem of acoustic echoes caused by 

mechanical coupling between a speaker and microphone or, 

more commonly, by acoustic coupling and room reflections.  To 

compensate for these effects in the near-end signal, we know 

that the optimal location for an adaptive echo canceller is at the 

network interface after the far-end speech signal has been 

decompressed and before the near-end signal is compressed [3]. 

The stochastic gradient algorithms and variants such as the 

normalized least-mean-square (NLMS) remain the most 

commonly used techniques for acoustic echo cancellation 

because of their simplicity and low computational complexity 

[4].  However, the convergence rate of these algorithms is 

dependent upon the input signal’s autocorrelation function, and 

generally degrades in the presence of colored input signals such 

as speech.  In addition, for long impulse responses encountered 

in acoustic echo cancellation the convergence time of these 

algorithms is unacceptably low [5].  To improve the rate of 

convergence, there exist many recently proposed techniques for 

improving the convergence rate such as the computationally 

expensive frequency domain adaptive filtering (FDAF) [6], 

employing lower complexity affine projection algorithms (APA) 

[7], and adaptively varying the NLMS step size parameter [8].  

In [9] a modified version of the Filtered-X LMS algorithm is 

introduced whereby the input signal is whitened using linear 

prediction, but that technique uses a single decorrelation filter 

the same length as the target impulse response that has to be 

updated at every sample period.  In this paper we build upon the 

algorithm in [9] by employing a bank of short decorrelation 

filters whose coefficients are obtained from an LPC-based 

compressed representation of the input signal, which is typically 

available at the network interface mentioned above in a VoIP or 

videoconferencing system. 

The paper is organized as follows.  In Section 2 we describe 

our combined LPC-based speech coder and echo canceller 

structure.  This is followed in Section 3 with simulation results 

of the proposed algorithm applied to acoustic echo cancellation 

both in a stationary environment and in the presence of a 

changing room impulse response. 

2. COMBINED ECHO CANCELLER STRUCTURE 

2.1. Overview 

A block diagram of the echo canceller structure is shown in 

Figure 1.  A stream of compressed speech frames is received at a 

network interface and the input signal x(n) is reconstructed using 

an LPC-based speech decoder.  An adaptive filter h n(j) is used 

to compensate for the acoustic channel and produces an error 

signal e(n).  However, the adaptation algorithm employs the 

short-term excitation signal from the speech decoder as an input 

signal, and preprocesses the error signal with a bank of FIR 

filters constructed from the current and previous sets of LPC 

synthesis filter coefficients from the speech decoder.  We 

describe the system in more detail in the following subsections. 
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Figure 1 – Block diagram of echo canceller structure 
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2.2. LPC-based speech synthesis model 

Most low-bit-rate LPC-based speech coders segment signals into 

frames of 10 – 30 ms in duration, and for each frame determine a 

representative set of parameters which are quantized and sent to 

the destination decoder.  To reduce encoder complexity the 

parameters are often updated for smaller subframes of 5 – 7.5 ms 

in duration. 
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Figure 2 – LPC-based speech synthesis model

Figure 2 shows a typical speech synthesis model used by an 

LPC-based decoder.  An excitation signal u(n) is obtained from a 

structured or stochastic codebook and scaled by a gain parameter 

gc(n).  This scaled excitation signal is spectrally shaped by an 

all-pole pitch synthesis filter represented by a single pitch lag 

(n) and gain gp(n) to form the short-term excitation signal r(n).

Finally, an Mth-order all-pole LPC synthesis filter is applied, 

represented by the set of coefficients a(n, i) for 1 i M.  Using 

this model the reconstructed speech signal x(n) is given by: 
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Note that the parameters are depicted here as time-varying in n,

but in practice they are constant for the duration of a subframe. 

2.3. Filtered-X LMS algorithm 

We base our filter adaptation on a reformulated version of the 

Filtered-X LMS algorithm introduced in [9], as shown in Figure 

1 and reviewed as follows.  Let hn(j) = h(j) – h'n(j) be the 

difference between the target and estimated impulse responses at 

time n.  Combining this with (1) gives the error signal as a 

function of the current and previous sets of LPC synthesis filter 

coefficients over the duration of the target impulse response: 
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where N is the length of the impulse response and v(n) is 

uncorrelated additive noise.  In [9] an adaptive FIR decorrelation 

filter f(n) is applied to the input x(n) and the error e(n) to form 

the filtered input and filtered error, respectively: 
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where L is the length of f(n).  These filtered signals are 

employed in the normalized LMS filter coefficient update 

instead of the original input and error signals.  Ideally xf(n) is 

completely decorrelated and ef(n) is proportional to the 

convolution of the filtered input and the desired impulse 

response:
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In this case the expected value of the stochastic gradient estimate 

in the LMS filter coefficient update is directly proportional to 

the current filter coefficient difference: 
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where x
2 is the variance of xf(n), and 0 l N – 1.  This is 

equivalent to filtering uncorrelated noise, and the convergence 

rate is no longer dependent upon the eigenvalue spread of the 

input signal’s correlation matrix [4]. 

From (1) it is clear that a good choice for the decorrelation 

filter is the inverse of the all-pole LPC synthesis filter at time n:

Mkknakff ≤≤−== 1),()(;1)0(  (8) 

Substituting (1) and (8) into (4) shows that a good candidate for 

the filtered input signal xf(n) is simply the short-term excitation 

signal tapped from the speech decoder: 
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Recall that the short-term excitation signal is formed from a 

“random” codebook signal and a single-tap pitch synthesis filter.  

Therefore we predict that r(n) will be more decorrelated than 

x(n), an assumption we investigate in Section 3. 

From (3) we see that e(n) is a function of the current and 

previous LPC synthesis filter coefficients which vary 

considerably in time, particularly over the duration of impulse 

responses common in acoustic echo cancellation (N  2000).  

Therefore, we define a new filtered error signal ef(n, l) that is a 

function of both the current time n and the desired filter tap l to 

be updated in the LMS coefficient update equation.  In this case, 

we apply a bank of decorrelation filters constructed by applying 

the inverse of the all-pole LPC synthesis filter in effect at the 

decoder at time n – l:

Mkklnakff ≤≤−−== 1),()(;1)0(  (10) 

Substituting (10) into (3) gives us the new filtered error signal 

ef(n,l) for use in the LMS filter coefficient update equation: 
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where µ is the LMS step size parameter and 0 l N – 1.  In 

order to simplify (11) we make the following assumptions.  A 

practical vocoder fixes the LPC synthesis filter coefficients for 

the duration of a subframe, and typically M = 10.  Since M << N

for long impulse responses, then the LPC synthesis filter is 

approximately constant in the short term: a(n – j – k, i) a(n – j,

i) for 1 k M and 0 j N – 1.  Furthermore, if µ << 1 then 

hn–k(j) hn(j) for 1 k M, and it can be shown that ef(n, l)

assumes the simplified form in accordance with (6) and (7): 
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Note that the proposed algorithm differs from a conventional 

pre-whitened NLMS ([7]) in that the presence of LPC synthesis 

filter coefficients at the speech decoder avoids the need to 

calculate decorrelation filter coefficients.  In addition, a bank of 

such filters is employed to produce a coefficient-varying filtered 

error signal for use in the LMS coefficient update equation. 

2.4. Computational complexity 

If the short term excitation signal can be extracted directly from 

the decoder, then no computation is required to compute xf(n)

from the input signal.  Calculating ef(n,l) would require NM

multiplications per sample if the LPC synthesis filter coefficients 

were time varying in n.  In practice the filter is constant for the 

duration of a subframe and interpolated within frames of F

samples, so an approximation is to use the per-frame LPC 

coefficients to calculate ef(n, l) in F-sample blocks.  In this case 

only ceil( N / F ) filters are necessary to calculate ef(n, l) per 

sample period, each with a cost of M multiplications.  For 

example, ITU G.729 uses F = 80 and M = 10, so for N = 2000 

the algorithm requires (2000 / 80 ) x 10 = 250 multiplications 

per sample to calculate ef(n, l).

3. SIMULATION RESULTS 

3.1. Methodology 

The proposed algorithm was implemented using the LPC-based 

speech coder defined in ITU G.729 [1].  The reference code was 

modified to extract the short-term excitation signal r(n) and LPC 

synthesis filter coefficients a(n, i) from the decoder, and the 

speech signal x(n) was calculated with postfiltering disabled.  

Tests were conducted using the room impulse responses shown 

in Figure 3 consisting of N = 2000 samples (250 ms).  The 

performance was compared to NLMS, and to pre-whitened 

NLMS employing a first-order decorrelation filter [7].  A step 

size of µ = 0.1 was employed for all algorithms, and 

performance measured using the system distance and echo return 

loss enhancement (ERLE), defined respectively by [5]: 
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Test input consisted of continuous speech from the DARPA 

TIMIT database [10] formed by concatenating training 

sequences from a male speaker downsampled to 8 kHz and 

compressed using the ITU G.729 encoder.  White noise was 

added to the near-end signals to produce a segmental signal-to-

noise ratio (SEGSNR) of 45 dB. 

3.2. Statistics of short-term excitation signal 

In order to verify that the short-term excitation signal is more 

decorrelated than the reconstructed speech signal as assumed 

earlier, we estimated the autocorrelation matrices of r(n) and 

x(n) for segments of 250 samples (~30 ms) with 50-sample 

overlap, and for each matrix the condition number was 

determined.  Note that for a completely uncorrelated signal the 

condition number is one.  Figure 4 shows a plot of these results, 

revealing that r(n) has a very low average condition number, and 

as such is a good candidate for the filtered input signal xf(n).

3.3. Convergence and tracking performance 

Figure 5 shows a plot of the system distance and ERLE as a 

function of time for the first room impulse response.  It is clear 

that the proposed algorithm produces a more constant rate of 

convergence with respect to system distance, which is in 

agreement with the theoretical performance shown in (7) and 

(13).  Note also that after ten seconds of adaptation the system 

distance of the proposed algorithm is 10 dB lower than NLMS 

and pre-whitened NLMS.  With respect to ERLE, the proposed 

algorithm achieves an average 10 dB improvement in ERLE 

during the convergence phase, approaching the steady-state 

bound of 45 dB faster than NLMS and pre-whitened NLMS. 

Figure 6 shows the system distance and ERLE as a function 

of time after switching from the first to second room impulse 

responses after ten seconds of adaptation.  It is clear from this 

plot that the depth and rate of convergence of the proposed 

algorithm is similar during both initial convergence and after the 

change in impulse response.  In addition, the improvement in 

ERLE remains 5 dB on average during re-convergence. 

4. CONCLUSIONS 

A novel echo canceller was described combining a Filtered-X 

LMS algorithm with an LPC-based speech coder.  Simulation 

using the ITU G.729 standard shows a more constant and faster 
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rate of convergence than NLMS and pre-whitened NLMS when 

applied to room impulse responses, with a greater average ERLE 

observed during both initial convergence and while tracking.  In 

closing, we note that the algorithm is applicable to other LPC-

based vocoders including the recent ITU G.722.2 standard. 

5. ACKNOWLEDGEMENTS 

The authors gratefully acknowledge financial support from the 

Natural Sciences and Engineering Research Council of Canada. 

6. REFERENCES 

[1] International Telecommunications Union, ITU-T G.729: 

Coding of speech at 8 kbit/s using CS-ACELP, ITU 1996. 

[2] International Telecommunications Union, ITU-T G.722.2: 

Wideband coding of speech at around 16 kbit/s using 

Adaptive Multi-Rate Wideband (AMR-WB), ITU 2001. 

[3] V. V. Krishna, J. Rayala, and B. Slade, “Algorithmic and 

implementation aspects of echo cancellation in packet voice 

networks,” Proc. 36th Asilomar Conf., vol. 2, pp. 1252 – 

1257, Nov. 2002. 

[4] S. Haykin, Adaptive Filter Theory, 3rd ed. Upper Saddle 

River, NJ: Prentice Hall, 1996. 

[5] J. Homer, R. R. Bitmead and I. Mareels, “Quantifying the 

effects of dimension on the convergence rate of the LMS 

adaptive FIR estimator,” IEEE Trans. Signal Processing,

vol. 46, no. 10, pp. 2611 – 2615, Oct. 1998. 

[6] K. Eneman and M. Moonen, “Iterated partitioned block 

frequency-domain adaptive filtering for acoustic echo 

cancellation,” IEEE Trans. Speech Audio Processing, vol. 

11, no. 2, Mar. 2003. 

[7] Breining et al, “Acoustic echo control: An application of 

very-high-order adaptive filters,” IEEE Signal Processing 

Mag., vol. 16, no 4, pp. 42 – 69, Jul. 1999. 

[8] S. Emura and Y. Haneda, “A method of coherence-based 

step-size control for robust stereo echo cancellation,” Proc.

IEEE ICASSP’03, vol. 5, pp. 592 – 595, Apr. 2003. 

[9] M. Mboup, M. Bonnet and N. Bershad, “LMS coupled 

adaptive prediction and system identification: a statistical 

model and transient mean analysis,” IEEE Trans. Signal 

Processing, vol. 42, no. 10, pp. 2607 – 2614, Oct. 1994. 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.4

−0.2

0

0.2

0.4

SAMPLE (N)

H
(N

)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.4

−0.2

0

0.2

0.4

SAMPLE (N)

H
(N

)

Figure 3 – Plot of two test room impulse responses 

[10] J. Garofolo et al, DARPA TIMIT Acoustic-Phonetic 

Continuous Speech Corpus CD-ROM. NIST, 1990. 

0 100 200 300 400 500 600
0

10

20

30

40

50

60

ANALYSIS BLOCK

C
O

N
D

IT
IO

N
 N

U
M

B
E

R
 (

D
E

C
IB

E
L

S)

X(N)
R(N)

Figure 4 – Autocorrelation matrix condition number as a 

function of time for x(n) and r(n)

0 2 4 6 8 10 12 14 16 18 20
−30

−25

−20

−15

−10

−5

0

TIME (SECONDS)

D
IS

T
A

N
C

E
 (

D
E

C
IB

E
L

S)

NLMS
PRE−WHITENED NLMS
FILTERED−X LMS

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

TIME (SECONDS)

E
R

L
E

 (
D

E
C

IB
E

L
S)

NLMS
PRE−WHITENED NLMS
FILTERED−X LMS

Figure 5 – System distance and ERLE as a function of time 

for the test signal applied to the first room impulse response 
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