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ABSTRACT

High-fidelity blind audio signal separation is addressed adopting
the extended ICA algorithm, single-input multiple-output (SIMO)-
model-based ICA. The SIMO-ICA consists of multiple ICA parts
and a fidelity controller, and each ICA runs in parallel under fi-
delity control of the entire separation system. SIMO-ICA can sep-
arate the mixed signals, not into monaural source signals, but into
SIMO-model-based signals from independent sources as they are
at the microphones. Thus, the separated signals of the SIMO-ICA
can maintain the spatial qualities of each sound source. In this pa-
per, we apply the SIMO-ICA to blind separation problem of mixed
binaural sounds including the effect of the head-related transfer
function (HRTF). The experimental results reveal that the perfor-
mance of the proposed SIMO-ICA is superior to that of the con-
ventional ICA-based method, and the separated signals of SIMO-
ICA maintain the spatial qualities of each sound source.

1. INTRODUCTION

Blind source separation (BSS) is the approach taken to estimate
original source signals using only the information of the mixed sig-
nals observed in each input channel. This technique is applicable
to high-quality hands-free telecommunication systems. In recent
works of BSS based on independent component analysis (ICA) [1],
various methods have been proposed to deal with a means of sep-
aration of acoustic sounds which corresponds to the convolutive
mixture case [2]-[4]. However, the conventional ICA-based BSS
approaches are basically means of extracting each of the indepen-
dent sound sources as a monaural signal, and consequently they
have a serious drawback in that the separated sounds cannot main-
tain information about the directivity, localization, or spatial quali-
ties of each sound source. This prevents any BSS method from be-
ing applied to binaural signal processing [5] or high-fidelity sound
reproduction systems [6].

In order to solve the above-mentioned fundamental problems,
we have proposed the high-fidelity BSS using Single-Input Multiple-
Output (SIMO)-model-based ICA [7], in which the convolutive
mixtures of acoustic signals are decomposed into the SIMO com-
ponents. Here the term "SIMO” represents the specific transmis-
sion system in which the input is a single source signal and the out-
puts are its transmitted signals observed at multiple microphones.
The SIMO-ICA consists of multiple ICA parts and a fidelity con-
troller, and each ICA runs in parallel under the fidelity control
of the entire separation system. The SIMO-ICA can separate the
mixed signals, not into monaural source signals but into SIMO-
model-based signals from independent sources as they are at the
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microphones. Thus, the separated signals of the SIMO-ICA can
maintain the spatial qualities of each sound source.

In this paper, we apply the SIMO-ICA to the blind separation
problem of binaural sounds including the effect of the head-related
transfer function (HRTF) [5]. We carried out the separation experi-
ments of binaural sounds recorded using a head and torso simulator
(HATS) under a reverberant condition. From the results, it is re-
vealed that the performance of separated signals of the SIMO-ICA
is superior to that of the conventional ICA method. Also, from
the shape of HRTF estimated by the SIMO-ICA, it can be shown
that the output signals of SIMO-ICA maintain information about
spatial qualities of each sound source.

2. MIXING PROCESS AND CONVENTIONAL BSS

2.1. Mixing Process

In this study, the number of microphones is K and the number of
multiple sound sources is L. In general, the observed signals in
which multiple source signals are mixed linearly are expressed as

N-1
x(t) =Y a(n)s(t—n) = A(2)s(t), 1)

n=0
where s(t) = [s1(t),- - 5L (t)]™ is the source signal vector and
z(t) = [z1(t), -,z (¢ )} is the observed signal vector. Also,
a(n) = [ari(n)] is the mixing filter matrlx with the length of
N, and A( = [Akl( )} l = [Zﬂ —0 akl( ) N ]kl is the z-

transform of a(n), where z~' is used as the unit-delay operator,
ie, 27" - z(t) = z(t — n), ax is the impulse response between
the k-th microphone and the I-th sound source, and [X];; denotes
the matrix which includes the element X in the i-th row and the
j-th column. Hereafter, we only deal with the case of K = L in
this paper.

2.2. Conventional ICA-based BSS Method

In the BSS method, we consider the time-domain ICA (TDICA),
in which each element of the separation matrix is represented as
an FIR filter. In the TDICA, we optimize the separation matrix by
using only the fullband observed signals without subband process-
ing. The separated signal y(t) = [y1(t),--- ,yr(t)]" is expressed
as

>}

—1

w(n)x(t —n), )

0

yt) =

n

where w(n) is the separation filter matrix and D is the filter length
of w(n). In our study, the separation filter matrix is optimized by
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Fig. 1. Input and output relations in conventional ICA.

minimizing the Kullback-Leibler divergence (KLD) between the
joint probability density function (PDF) of y(t) and the product of
marginal PDFs of y; (¢). The iterative learning rule is given by [8]

wl (n)
_ 'w[j](n)
-« Z {off -diag < G )yt —n+ d)T>t}
~wV(d), 3)

where « is the step-size parameter, the superscript [j] is used to
express the value of the j-th step in the iterations, (-); denotes the
time-averaging operator, and off-diag X is the operation for setting
every diagonal element of the matrix X to be zero. Also, ¢(+) is
the nonlinear vector function, e.g., the [-th element is set to be

tanh(y;(t)).

2.3. Problems in Conventional ICA

The conventional ICA is basically a means of extracting each of
the independent sound sources as a monaural signal. In addition,
the quality of the separated sound cannot be guaranteed, i.e., the
separated signals can possibly include spectral distortions because
the modified separated signals which convolved with arbitrary lin-
ear filters are still mutually independent (see Fig. 1). Therefore,
the conventional ICA has a serious drawback in that the separated
sounds cannot maintain information about the directivity, localiza-
tion, or spatial qualities of each sound source. In order to resolve
the problems, particularly for the sound quality, Matsuoka et al.
have proposed a modified ICA based on the Minimal Distortion
Principle [9]. However, this method is valid for only monaural out-
puts, and the fidelity of the output signals as SIMO-model-based
signals cannot be guaranteed.

3. PROPOSED ALGORITHM: SIMO-ICA

In order to solve the above-mentioned fundamental problems, we

have proposed a new blind separation framework that SIMO-model-

based acoustic signals are separated by the extended ICA algo-
rithm, SIMO-ICA [7]. The SIMO-ICA consists of (I — 1) ICA
parts and a fidelity controller, and each ICA runs in parallel un-
der the fidelity control of the entire separation system (see Fig. 2).

The separated signals of the [-th ICA (I = 1,--- ,L — 1) in the
SIMO-ICA are defined by

CA
Yacan(t) = v Ot Z wacap(n)z(t—mn), @)

where w(1cay)(n) is the separation filter matrix in the I-th ICA.
Regarding the fidelity controller, we calculate the following signal

vector, in which all of the elements are to be mutually independent,

5) - Z y(ICAl)(t)
1=1
D—-1
= > wacan(n)x
n=0

To explicitly show the meaning of the fidelity controller, we rewrite
Eq. (5) as

Z Yacan(t)
=1

Equation (6) means a constraint to force the sum of all of the ICAs’
output vectors Elel Yacan (t) to be the sum of all of the SIMO
components [, Api(2)s1(t — D/2)]x1 (= x(t — D/2)). Here
the delay of D/2 is used as to deal with nonminimum phase sys-
tems. If the independent sound sources are separated by Eq. (4),
and simultaneously the signals obtained by Eq. (5) are also mutu-
ally independent, then the output signals converge on unique solu-
tions, up to the permutation, as

y(ICAl)(t) = diag [A(Z)PlT] Ps(t - D/2), @)

where P; (I = 1, ..., L) are exclusively-selected permutation
matrices which satisfy L

> Pi=[li. ®)

=1

y(ICAL)(t) = z(t -

(t—mn). 3)

—&(t — D/2) = [0]p1. ©)

Obviously the solutions given by Eq. (7) provide necessary
and sufficient SIMO components, Ag;(z)s;(t — D/2), for each
[-th source. However, the condition Eq. (8) allows multiple possi-
bilities for the combination of P,. For example, one possibility is
shown in Fig. 2 and this corresponds to

Py = [0im(k,)] ki, )
where §;; is Kronecker’s delta function, and
_ k+l-1  (k+1-1<L)
m(k’l)_{k+l—1—L (k+1—1> L) (10)
In this case, Eq. (7) yields
Yacany ) =[AemenSme,n(E—D/2)k (I=1,---,L). (11)

In order to obtain Eq. (7), the natural gradient [4] of KLD of
Eq. (5) with respect to wca(n) should be added to the iter-
ative learning rule of the separation filter in the I-th ICA (I =
1,--- ,L — 1). The new iterative algorithm of the I-th ICA part
(I=1,---,L—1)in SIMO-ICA is given as

W+
(JICAZ)(n)
D—-1
=wl ) —a > {off—diag <<p(y£{]CAl)(t))
d=0

yEJI]CAl) (t—n+ d)T>t}ijI]CAl) (d)

{Off diag <‘P 12) Z yEJI]CAl)
(a(t—n+d- %72 Yiican(t =7+ d)T>>t}
=1
p
(r5a-5)-> “’EJI]CAw(d))] ’ (42
=1
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Fig. 2. Example of input and output relations in the proposed SIMO-ICA, where permutation matrices P; is given by Eq. (9).
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Fig. 3. Layout of reverberant room used in experiments.

where §(n) is a delta function, where 6(0) = 1and §(n) = 0 (n #
0). In Eq. (12), the updating w ycasy (n) for all [ should be simul-

taneously performed in parallel because each iterative equation is

associated with the others via 3/ 'ij ]c an (). Also, the initial

values of w cay)(n) for all I should be different.

4. EXPERIMENTS AND RESULTS

4.1. Conditions for Experiments

We carried out binaural sound separation experiments using speech
signals convolved with impulse responses recorded using HATS
(Briiel & Kjar) under the experimental room as shown in Fig. 3.
The speech signals are assumed to arrive from two directions, —30°
and 45°. The distance between HATS and the loudspeakers is 1.5
m. Two kinds of sentences, spoken by two male and two female
speakers, are used as the original speech samples. Using these
sentences, we obtain 6 combinations. The sampling frequency is
8 kHz and the length of speech is limited to 3 seconds. The length
of w(n) is 512, and the initial values are inverse filters of HRTFs
whose directions of sources are 60°. The number of iterations
in ICA is 5000. Regarding the conventional ICA for comparison,
we used the nonholonomic ICA [8]. The step-size parameter «
is changed from 1.0 x 107® to 2.0 x 107° to find the optima.
SIMO-model accuracy (SA) is used as an evaluation score. The
SA is defined as

N
[}

O Conventional ICA
M Proposed SIMO-ICA

N
o

-
4]

-
o

SIMO-Model Accuracy [dB]

m1+m2 m1+f1 m1+f2 m2+f1 m2+f2 f1+f2 Average

Combination of Speakers
Fig. 4. Results of SIMO-model accuracy in separation experi-
ments of binaural sounds recorded using HATS. The labels “m1”

and “m2” mean two male speakers, and “f1” and “f2” mean two
female speakers.

| Akt (2)Smen (E— 2) |12
ICAI
1 s S0 () = Ak (2)Smeny (E— 2) |2

(13)

The SA indicates a degree of the similarity between the separated
signals of the ICA and real SIMO-model-based signals.

4.2. Results and Discussion

Figure 4 shows the results of SA for different speaker combina-
tions. The bars on the right of this figure correspond to the av-
eraged results of each combination. In the averaged scores, the
improvement of SA in SIMO-ICA is 9.5 dB compared with the
conventional ICA. From these results, it is evident that the sepa-
rated signals in the SIMO-ICA is obviously superior to that in the
conventional ICA-based method.

In order to confirm that the separated signals of the SIMO-
ICA maintain the spatial qualities of each sound source, we com-
pared the shape of the real HRTFs with that of estimated HRTFs by
SIMO-ICA. We obtain the real and estimated HRTFs by truncating
the corresponding early reflection components (within 25 taps af-
ter the peak pulse) from the real impulse responses A;;(z)d(t) and
the estimated impulse responses. The impulse responses estimated
by the SIMO-ICA are expressed as
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(A ()] = i w(can (n)A(z)

0(t+D/2—n)
5(t+DJ2 — n)] » (19

where 6(t + D/2 — n) is used to cancel the time delay of D/2 in
w(cay(n). Figure. 5 shows the shapes of these HRTFs in both
the best (SA=20.2 dB) and worst (SA=9.6 dB) cases. From this
figure, it is confirmed that shapes of the estimated HRTFs are quite
similar to the real HRTFs in the best case. Thus, we can conclude
that SIMO-ICA has the potential to decompose the mixed binaural
signals into SIMO-model-based signals without loss of informa-
tion about spatial qualities of each sound source.

5. CONCLUSION

We apply single-input multiple-output (SIMO)-model-based ICA
to the blind source separation problem of the binaural sounds.
SIMO-ICA is the extended ICA algorithm for separating the mixed
signals, not into monaural source signals but into SIMO-model-
based signals of independent sources as they are at the micro-
phones. In order to evaluate its effectiveness, separation exper-
iments of binaural sounds recorded using HATS are carried out.
The experimental results reveal that the performance of the pro-
posed SIMO-ICA is superior to that of the conventional ICA-based
method, and the separated signals of SIMO-ICA maintain the spa-
tial qualities of each binaural sound source.
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