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ABSTRACT

A multichannel wideband signal dereverberation and enhancement
method is proposed in this paper. It uses the blindly estimated im-

pulse responses (IRs) relating the signal source and each sensor to

form a multiple input inverse filter (MINT) for speech dereverbera-

tion and ehancement with extended generalized sidelobe canceller
(GSC). With the replacement of MINT for fixed beamformer and

modification of blocking matrix in conventional GSC, the result-

ing extended GSC not only dereverberate the distorted target sig-

nal, but also suppress the interference/noise. Computer simulation
results show the effectiveness of the proposed method.

1. INTRODUCTION

Multichannel speech dereverberation and enhancement is an im-

portant research topic in speech applications. It is known that

an acoustic enclosure usually reduces the intelligibility of speech

transmitted through it because the transmission path is not ideal.
The microphone received signal consists of the direct path signal

from the source, multipath reflections and reverberation. More-

over, signal also contains background interference and noise, which

should be suppressed by further processing.

To combat the reverberation/multipath effects and enhance the
target signal, the matched filter (MF) array [1] was proposed. The

study showed that the MF array significantly improves the qual-

ity of signal captured in reverberant environment. However, this

method has two drawbacks: Firstly, a large amount of sensors are
required to achieve high dereverberation and interference suppres-

sion performance. The other one is that the channel IRs must be

known a priori. It’s a great challenge to obtain better dereverbera-

tion performance with a small number of sensors.

Miyoshi etc. proposed a new method [2], we call it as MINT,

to find the exact inverse of a point in a room by using multiple

sensors. In this method, the channel IR relating the signal source

and each sensor is modelled as FIR filter. It was proved in [2] that

the exact inverse filter can be obtained provided that the transfer
functions of multiple IRs are coprime. The minimum number of

sensors is two. This method indicates that the perfect dereverber-

ation performance can be achieved with small number of sensors.

In practical applications, if more sensors are available, the chances
of the IRs being non-coprime diminishes. However, this method

still has the drawback that the IRs are assumed to be known a pri-

ori. Moreover, the MINT obtained does not have the capability of

noise suppression, which is different from MF array.

Either MF array or MINT used, the identification of the IRs
is necessary. The IRs identification based on training signal [3]

is not practical when the signal source moves or the environment

changes. A potentially better solution is the blind channel identifi-

cation (BCI) technique [4,5]. Although there are many BCI meth-
ods proposed in literature, few of them can be applied in acoustic

applications due the large length of multi-channel IR, nonwhite

inputs, intensive computational load, etc. The normalized mul-

tichannel frequency-domain LMS (NMCFLMS) developed in [6]
indicated the possibility of using adaptive LMS-type method to es-

timate the multichannel IRs of large length. However, this method

requires very high input SNR, which is too strict for practical ap-

plications. In this paper, we use the normalized blind frequency-
domain least mean square (NBFLMS) method [7] to estimate the

multi-channel IRs. NBFLMS is insensitive to input noise and has

better estimation performance than NMCFLMS [7].

With the blindly estimated channel IRs, we can use MINT to

dereverberate the distorted speech with small number of sensors.

To calculate the MINT, the row action projection (RAP) method is

adopt due to its simple algorithm and high performance [8]. Since
the MINT does not have the capability of noise suppression, we

propose to combine the MINT with GSC. The fixed beamforer of

GSC is replaced by the MINT. Moreover, to combat the signal can-

cellation problem of GSC in reverberant environment, its blocking
matrix should also be modified. In [9], we proposed an extended

GSC as well as its implementation in time and frequency domain

for such purpose.

This paper is organized as follows. The system model is re-

viewed in Section 2. In Section 3, the MINT for speech dere-

verberation as well as RAP method are discussed. The NBFLMS
is then presented in Section 4. The extended GSC is discussed

in Section 5. The resulting GSC with MINT has perfect signal

dereverberation and noise suppression capability. Some numerical

results are shown in Section 6. In Section 7, a brief conclusion is

given.

2. SYSTEM MODEL

Notations used in this paper are defined before we formulate the

problem and develop the algorithm. E{·}, (·)∗, (·)T , (·)H , �

and || · || stand for mathematical expectation, complex conjugate,

vector/matrix transpose, vector/matrix Hermitian transpose, linear

convolution, and Euclidean norm, respectively. The identity ma-
trix is I.

There are M sensors used. Each sensor picks up the target sig-

IV - 1050-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡



nal as well as the environment noise. The signal s(k) propagates

through the ith channel with IR hi,k, i = 1, 2, · · · , M , and is cor-

rupted by additive environment noise ni(k). The received signal
xi(k) of ith channel is expressed as

xi(k) = hi,k � s(k) + ni(k), i = 1, 2, · · · , M. (1)

In most applications, the transfer function hi,k can be approxi-

mated as FIR filters with length L and coefficient vector

hi = [hi,0 hi,1 · · · hi,L−1]
T
. (2)

Here, we assume that all the IRs are fixed or changing very slowly

although the time variation can be tracked by the proposed method.

3. SPEECH DEREVERBERATION USING MINT

Assume that the channel IRs are known. Filters gi,k, i = 1, · · · , M

can be used to form MINT It was proved in [2] that the exact in-
verse of room transfer function exists uniquely if these two condi-

tions hold:

1. All the transfer functions {Z(hi,k)} are co-prime, where

Z(·) denotes Z transform.

2. The order of gi,k is less than hi,k.

In this paper, we assume that hi,k and gi,k have same order.

The total response d(k) of length 2L−1 relating source and MINT
output is

d(k) =

M∑
i=1

hi,k � gi,k (3)

In matrix form, we can express

d = [HT
1 · · · H

T
M ]g = Hg (4)

where

d = [d(0) d(1) · · · d(2L − 1)]T

Hi =

⎡
⎢⎢⎢⎣

hi(0) · · · hi(L − 1) 0 · · · 0
0 hi(0) · · · hi(L − 1) 0 0
...

...
. . .

...
. . .

...

0 · · · 0 hi(0) · · · hi(L − 1)

⎤
⎥⎥⎥⎦

g = [g1(0) · · · g1(L − 1)︸ ︷︷ ︸
gT
1

· · · gM (0) · · · gM (L − 1)︸ ︷︷ ︸
gT

M

]T

(5)

In the speech dereverberation applications, the ideal total response

vector d is

d = [1 0 · · · 0]T . (6)

If hi is known, g can be calculated by solving (4). In this

paper, we adopt the RAP method [8], which is an efficient way to
solve (4). Moreover, the RAP provides stable and fast solution.

With RAP method, the vector g can be updated using

e(k) = d(p) − hpg(k)

g(k + 1) = g(k) + λ
e(k)

||hp||2
h

T
p .

(7)

where hp is the pth row of H at kth iteration and p = k mod (M+
1). The relaxation parameter λ should be select in [0, 1]. If the

measurement is noisy, usually a small value is chosen for λ. Oth-

erwise, a large value is chosen to speed up convergence.

4. BLIND MULTICHANNEL IDENTIFICATION

The derivation of NBFLMS is based on cross relation (CR) crite-

ria [10, 11] in frequency domain using overlap-save method [12].

Refer to [7] for the detailed derivation of the NBFLMS.

Theorem 1 The constrained NBFLMS algorithm is

h̄k(m) = h̃k(m − 1) − ρW
10
N′×N′P

−1(m)

M∑
i=1

[
Rxixi

(m)h̃k(m) − Rxixk
(m)h̃i(m)

]

k = 1, 2, · · · , M

The unconstrained NBFLMS algorithm is

h̄k(m) = h̃k(m − 1) − ρP
−1(m)

M∑
i=1

[
Rxixi

(m)h̃k(m) − Rxixk
(m)h̃i(m)

]

k = 1, 2, · · · , M

where

Rxixi
(m) ≈ βRxixi

(m − 1) + D
H
xi

(m)Dxi
(m)

Rxixk
(m) ≈ βRxixk

(m − 1) + D
H
xi

(m)Dxk
(m)

P(m) =
M∑

i=1,i�=k

R̂xixi
(m)

R̂xixi
(0) = Rxixi

(0)

R̂xixi
(m) = λR̂xixi

(m − 1) + Rxixi
(m)

W
10
N′×N′ = FN′

[
IL×L 0L×(N−1)

0(N−1)×L 0(N−1)×(N−1)

]
F

−1
N′

where FN′ is the N × N DFT matrix and Dxi
(m) is a diagonal

matrix whose diagonal elements are the FFT transform of vector
x̃i(m) given by

x̃i(m) = [xi(mN − L + 1) · · · xi(mN + N − 1)]T .

β and λ are forgetting factors.
To avoid trivial solution, the updated filter coefficient vectors

are normalized to vector with unit norm.

h̃k(m) =
h̄k(m)

||h(m)||
, h(m) = [h̄1(m) · · · h̄M (m)]T

The computational load of NBFLMS in Theorem 1 is low

since the matrices Rxixk
(m) and P(m) are both diagonal.

5. EXTENDED GENERALIZED SIDELOBE CANCELLER

One of the advantages of frequency domain filtering is that fast

Fourier transform (FFT) can be used to reduce the computational

complexity. From the property of discrete Fourier transform (DFT),
we know that the circular convolution of two finite length sequences

can be obtained by transforming both sequences to their respective

frequency domain (using FFT), performing an element-by-element

multiplication on the transformed samples, and transforming the
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result back to time domain (using inverse FFT). Another advantage

of frequency domain filtering is that FFT performs an orthogonal

transform on the input data. With the power normalization method,
it is possible to derive fast convergence algorithm for adaptive up-

dating. In this paper, the algorithm is derived based on the overlap-

save technique [12] for frequency domain filtering.

With the blindly estimated channel IRs, the GSC-ATF is formed
in frequency domain with MINT to replace the fixed beamformer

in [9]. The output y(m) of the fixed beamformer is

y(m) =

M∑
i=1

yi(m) = W
01
N×N′

M∑
i=1

(X̆i(m)g̃i)

= W
01
N×N′F

−1
N′

M∑
i=1

DX̆i
(m)g̃ i

(8)

The output signal vector of the ith blocking filter zi(m) is ex-

pressed as

zi(m) = W
01
N×N′F

−1
N′

M∑
j=1

DX̆j
(m)b̃ij , (9)

where

b̃ij = FN′W
10
N′×Lbij

bij = [bij(0) · · · bij(L − 1)]T
(10)

The output signal vector v(m) of the multichannel adaptive filter

is

v(m) = W
01
N×N′′F

−1
N′′

M∑
i=1

DZ̆i
(m)w̃ i, (11)

where N ′′ = Lw +N−1 and Z̆i(m) is the circulant matrix whose

first column vector is the extended vector z̃i(m) expressed as

z̃i(m) = [zi(mN−Lw+1) · · · zi(mN) · · · zi(mN+N+1)]T .

(12)
The vector w̃ i is expressed as

w̃ i = FN′′W
10
N′′×Lw

wi = W
10
N′′×Lw

w i

wi = [wi(0) · · · wi(Lw − 1)]T

w i = FLwwi

. (13)

Define the error vector e(m) in the frequency domain as

e(m) = FN(y(m, D) − v(m)), (14)

where y(m, D) is the delayed signal vector of y(m),

y(m, D) = [y(mN −L−D + 1) · · · y(mN + N −D + 1)]T .

(15)

Theorem 2 The constrained Newton-LMS type algorithm for GSC-
ATF is

ŵk(m) = ŵk(m − 1) − ρ
′
E{�2

C(m)}−1 � C(m)

= ŵk(m − 1) + ρW
10
N′′×N′′Rzk

(m)−1

· DH

Z̆k
(m)W01

N′′×Ne(m)

(16)

and the unconstrained Newton-LMS algorithm is

ŵk(m) = ŵk(m − 1) + ρRzk
(m)−1

D
H

Z̆k
(m)W01

N′′×Ne(m)
(17)

where ρ is the stepsize.

1 2 3 4 5

x 0.80 0.80 1.00 1.20 1.20

y 2.0 2.0 2.0 2.0 2.0

z 1.6 1.2 1.6 1.6 1.2

Table 1. Position (x,y,z) of five microphones (in meter)

The computational load of the algorithms in Theorem 2 is low

since the matrices D
H

Z̆k
(m) and Rzk

(m) are both diagonal ma-

trix. The matrix inverse and multiplication are simplified to ele-
ment inverse and multiplication. The implementations in time and

frequency domain have identical theoretical performance. How-

ever, the latter one has lower computational load and faster con-

vergence speed.

6. NUMERICAL STUDY

In this section, we asses the performance of the proposed method

for wideband signal dereverberation and enhancement. A micro-

phone array is used. The acoustic enclosure is a small office room

with dimension (x × y × z) = (2.8m × 3.2m × 2.2m), wall
reflection coefficients 0.8 and floor/celling reflection coefficients

0.4. This microphone array is placed in front of the PC monitor for

sound capture. The position of the microphones are given in Table

I. A source signal is placed at the position (1.0m, 1.5m, 1.4m).

The IR relating speech source and each microphone is calculated
using image method [13] with sampling rate 8kHz. In this simu-

lation, the IR length is set as L = 256, so that most of the rever-

beration is taken into account. A white background noise is used

in the simulation.

We firstly study the derverberation performance of the MINT.
The total IR relating the soruce signal and beamformer output is

shown in Fig. 1. It is obvious that the total IR is a very close to a

delay impulse, which mean the reverberation is reduced. The com-

parison of frequency responses (FRs) of total IR and one channel
IR is shown in Fig. 2. The FR of total IR is almost flat while the

FR of one channel has large spectral fluctuation.

In the following simulation, we show the speech enhancement

capability of the proposed method. The channel IRs are estimated

when the input SNR is 5dB. After that, a strong point interference

is placed at (2.5m, 2.8m, 1.3m). The average signal-to-interference
ratio (SIR) is 0dB. In Fig. 3(a), the waveform of the clean speech

signal is shown. In Fig. 3(b), the received signal of the first mi-

crophone is shown. This signal contains strong interference and

background noise. The output signal of the proposed method is
shown in Fig. 3(c). The noise is suppressed efficiently.

7. CONCLUSION

A method is proposed to use blind channel identification in mul-

tichannel wideband signal dereverbeation and enhancement. The

proposed method exploits the IRs estimated by NBFLMS to form a

MINT, which is used to replace the fixed beamformer in extended
GSC. The resulting GSC beamformer not only has perfect derever-

beration but also high noise suppression performance with a small

number of sensors. Simulation results show the effectiveness of

the proposed method.
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Fig. 1. The total IR relating source signal to MINT output using
estimated channel IRs

8. REFERENCES

[1] J. L. Flanagan, A. C. Surendran, and E. E. Jan, “Spatially selectivity
sound capture for speech and audio processing,” Speech Communi-
cation, vol. 13, pp. 207–222, 1993.

[2] M. Miyoshi and Y. Kaneda, “Inverse filtering of room acoustics,”
IEEE Trans. Acoust. Speech Processing, vol. 36, no. 2, pp. 145–152,
Feb. 1988.

[3] E. E. Jan, P. Svaizer, and J. L. Flanagan, “Matched-filter processing
of microphone array for spatial volume selectivity,” in Proc. ISCAS,
May 1995, pp. 1460–1463.

[4] G. B. Giannakis, Y. Hua, P. Stoica, and L. Tong, Eds., Signal Pro-
cessing Advances in Wireless and Mobile Communication: Trends
in Channel Estimation and Equalization. Upper Saddle River, NJ:
Prentice Hall PTR, 2001, vol. I.

[5] Z. Ding and Y. Li, Blind Equalization and Identification. New York:
Marcel Dekker, Inc., 2001.

[6] Y. Huang and J. Benesty, “A class of frequency-domain adaptive ap-
proaches to blind multichannel identification,” IEEE Trans. Signal
Processing, vol. 51, pp. 11–24, Jan. 2003.

[7] Z. L. Yu and M. H. Er, “A robust frequency domain adaptive blind
multichannel identification algorithm for acoustic applications,” ac-
cepted to present in ICASSP 2004.

[8] R. J. Mammone, Computational Methods of Signal Recognition and
Recovery. New York: John Wiley & Sons, 1992.

[9] Z. L. Yu and M. H. Er, “An extended GSC with arbitrary transfer
functions in time and frequency domain,” accepted to present in IS-
CAS 2004.

[10] H. Liu, G. Xu, and L. Tong, “A deterministic approach to blind equal-
ization,” in IEEE Conference Record of The Twenty-Seventh Asilo-
mar Conference on Signals, Systems and Computers, vol. 1, Nov.
1993, pp. 751 –755.

[11] G. Xu, H. Liu, L. Tong, and T. Kailath, “A least-square approach to
blind channel identification,” IEEE Trans. Signal Processing, vol. 43,
pp. 2982–2993, Dec. 1995.

[12] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Process-
ing. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1989.

[13] J. B. Allen and D. A. Berkley, “Image method for efficiently simu-
lating small room acoustics,” J. Acoust. Soc. Am., vol. 65, no. 4, pp.
943–950, April 1979.

0 50 100 150 200 250
−30

−25

−20

−15

−10

−5

0

Frequency (Hz)

Fr
eq

ue
nc

y 
R

es
po

ns
e 

(d
B)

Total frequency response
One Channel frequency reponse

Fig. 2. Comparison of the frequency responses of total IR and one

channel IR

0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Samples

(a) Original speech signal

0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Samples
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Fig. 3. Speech waveform comparison (0dB SIR for point interfer-

ence)
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