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ABSTRACT

This paper presents a new space constrained adaptive beam-
former employing an updated source power spectral density
(PSD). The space constraints are used to capture the tar-
get signal spatially and to provide robustness against steer-
ing error vectors. The PSD update on the other hand en-
sures that the spectral information of the desired source is
reflected continuously on the space constraints. As such,
target signal extraction can be achieved with minimum dis-
tortion. The beamformer operates in a subband structure to
allow time-frequency operation for each channel, yielding a
combination of weighted spatial and temporal filters. Eval-
uations on real car data show that the proposed algorithm
significantly improves the speech intelligibility with noise
suppression level up to 21 dB.

1. INTRODUCTION

The explosive growth of hands-free communication systems
has spurred a very intensive research and development in the
area of speech enhancement. Countless enhancement meth-
ods have been proposed throughout the years, with beam-
forming based techniques form the most promising choice
[1, 2]. This is due to the fact that beamforming exploits not
only temporal information but also spatial diversity [3, 4].
In other words, adaptive beamformers can achieve notable
interference suppression by using the fact that the origins of
the desired and interfering signals originate from different
locations in space. The drawback of these beamformers is
that they introduce target signal cancellation/distortion such
as in a generalized sidelobe canceller (GSC) [1]. This is due
to the vulnerability of the model based adaptive beamformer
with respect to the steering vector errors.

This paper proposes a novel space constrained subband
adaptive beamformer employing a source power spectral
density (PSD) update. The space constraints guard against
steering vector errors by taking into account of an area of
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point sources rather than a point in space. Essentially, the
beamformer is constrained to extract the target signal in a
pre-defined area. The estimated source PSD update, on the
other hand, is embedded in the optimum Wiener solution in
each subband to fully utilize the time-frequency information
of the target signal. Here, the source PSD is updated using a
least squares criterion and acts as a source spectral moulder.
In other words, it tracks the variation in the spectral con-
tent of the target signal continuously, yielding a spectrally
optimized constraint for each time instant. The integration
of both the space constraints and the PSD in its formulation
results in an efficient spatio-temporal beamformer. There-
fore, a maximally background noise suppression is achieved
whilst maintaining excellent target signal integrity. Evalua-
tions in a real car hands-free using a six-element array reveal
an impressive noise suppression level of up to 21 dB whilst
maintaining excellent timbre of the target signal.

2. THE PROPOSED BEAMFORMER

The block diagram of the proposed beamformer is shown in
Fig. 1. Initially, the received signal is decomposed into M
subbands with a decimation factor D by using an analysis
filter bank. Each subband is then processed independently
and finally the synthesis filter bank reconstructs all the sub-
band signals into fullband representation.
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Fig. 1. The proposed subband beamformer with the analysis
and synthesis filter banks.
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2.1. The Source Space Constraints

Consider a linear microphone array with I microphones.
The target signal in this case is a person speaking, which
can be modelled as an infinite number of point sources clus-
tered closely in space. This space is modelled as a circular
area A with radius r and a distance h from the array, see
Fig. 2. The advantage of having the source constrained re-
gion as opposed to a point source is consistent with the fact
that errors in the response vector cause large radial vectors
in the corresponding source location [1, 5]. These errors are
typically due to sensor misplacement and gain variations in
the microphones.
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Fig. 2. Configuration of the linear microphone array and
the source constrained area.

Let us denote S(Ω) as the PSD of the source in the pre-
defined area A at frequency Ω. The spatio-temporal covari-
ance matrix of the source in the spectral band [Ωa, Ωb] is
given as

Rs =
∫ Ωb

Ωa

∫
A

∫
S(Ω)d(Ω)(−→a )d(Ω)(−→a )Hd−→a dΩ, (1)

where −→a is a point source localisation vector and (·)H

denotes the Hermitian transposition. The response vector
d(Ω)(−→a ) is defined as

d(Ω)(−→a ) =
[

1
R1

e−jΩτ1(
−→a ), . . . ,

1
RI

e−jΩτI(−→a )

]T

, (2)

where τi(−→a ) is the time delay from a point source in the
pre-defined area to sensor i, and Ri is the distance between
the source and sensor i and [·]T denotes the transposition
operator. The reference point for the beamformer response
is defined at the origin of the coordinates.

For a frequency Ω, we define the spatial source covari-
ance matrix as,

R(Ω)
s = S(Ω)R̄(Ω)

s (3)

where

R̄(Ω)
s =

∫
A

∫
d(Ω)(−→a )d(Ω)(−→a )Hd−→a . (4)

The spatial source cross covariance vector on the other hand
is given by r(Ω)

s = S(Ω)r̄(Ω)
s where

r̄(Ω)
s =

∫
A

∫
d(Ω)(−→a )d−→a . (5)

2.2. The Source PSD Estimation

Assuming that the source and the background noise are un-
correlated, the received signal covariance matrix R(Ω), can
be decomposed as

R(Ω) = R(Ω)
s + R(Ω)

n , (6)

where R(Ω)
n denotes the noise covariance matrix. The co-

variance matrix in (6) can be estimated from K samples
of received data with index K during source silence period
when the noise is active alone as,

R(Ω)
n =

1
K

∑
k∈K

x(Ω)
n (k)x(Ω)

n (k)
H

, (7)

where x(Ω)
n (k) is the noise only received data. The noise

only period is typically identified using a voice activity de-
tector (VAD). Alternatively, the noise statistics in (7) can be
estimated using a calibration process such as in [6].

The spatial source covariance matrix can be written in
terms of R(Ω) and R(Ω)

n by substituting (3) into (6) as,

S(Ω)R̄(Ω)
s = R(Ω) − R(Ω)

n . (8)

The received signal covariance matrix can be estimated at
each iteration k as follows,

R(Ω)(k) =
1
L

L−1∑
l=0

x(Ω)(k − l)x(Ω)(k − l)
H

, (9)

where x(Ω)(k) is the received signal vector and L is the
length of the summation. Since R(Ω)

n and R(Ω)(k) are
readily estimated from (7) and (9), our task is to find a
non-negative PSD, S(Ω)(k), which optimizes the following
problem:

min
S(Ω),S(Ω)>0

‖ R(Ω)(k) − R(Ω)
n − S(Ω)R̄(Ω)

s ‖F , (10)

where ‖ · ‖F is the Frobenius norm. Let us denote the (p, q)
complex element of the matrix R(Ω)(k)−R(Ω)

n as apq+jbpq

where 1 ≤ p ≤ I and 1 ≤ q ≤ I . Likewise, each of the
complex element of R̄(Ω)

s is denoted as cpq +jdpq. The cost
function in (10) can be reduced to the following
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‖ R(Ω)(k)−R(Ω)
n −S(Ω)R̄(Ω)

s ‖F

=

(
I∑

p=1

I∑
q=1

∣∣∣(apq + jbpq) − S(Ω)(cpq + jdpq)
∣∣∣2

)1/2

=

(
I∑

p=1

I∑
q=1

(apq − S(Ω)cpq)2 + (bpq − S(Ω)dpq)2
)1/2

.

(11)
By setting the first derivative of (11) to zero, the estimated

PSD can be obtained as,

S(Ω)(k) = max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0,

I∑
p=1

I∑
q=1

(apqcpq + bpqdpq)

I∑
p=1

I∑
q=1

c2
pq + d2

pq

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (12)

This PSD is estimated at every iteration of the received
signal covariance matrix to provide a spectrally optimized
constraint on the source. In simple terms, it attempts to pre-
serve the spectra of the source like a spectra moulder.

2.3. The Wiener Solution

We now formulate the Wiener solution using the informa-
tion aforementioned. Let w(Ω)

opt (k) be the optimum weight
vector for each frequency Ω,

w(Ω)
opt (k) = [w(Ω)

1 (k), . . . , w(Ω)
I (k)]T . (13)

The optimum weight vector for each frequency Ω is given
by the Wiener solution as,

w(Ω)
opt (k) =

[
S(Ω)(k)R̄(Ω)

s +R(Ω)
n

]−1

S(Ω)(k)r̄(Ω)
s . (14)

From the pre-defined source area model A, the matrix
R̄(Ω)

s in (3) of a frequency Ω has non-zero determinant and
is therefore a full rank matrix1. Thus, this matrix can be
decomposed as follows,

R̄(Ω)
s = V(Ω)Λ(Ω)V(Ω)H , (15)

where V(Ω) = [v(Ω)
1 , · · · ,v(Ω)

I ] is a matrix that contains

the eigenvectors and Λ(Ω) = diag{λ(Ω)
1 , · · · , λ

(Ω)
I } is a di-

agonal matrix that consists of the eigenvalues. Substituting
(15) into (16), we have

w(Ω)
opt (k)=

[
S(Ω)(k)V(Ω)Λ(Ω)V(Ω)H +R(Ω)

n

]−1

S(Ω)(k)r̄(Ω)
s .

(16)
For computational savings, the spatial source covariance
matrix can be estimated using the largest eigenvalue, λ

(Ω)
max

1Depending on how much of the space it spans, it will have a few dom-
inating eigenvalues.

with its corresponding eigenvectors v(Ω)
max. By using the

Matrix Inversion Lemma [7], the inversion in (16) can be
avoided and the optimum weight vector can be reduced to

w(Ω)
opt (k) =

S(Ω)(k)(R(Ω)
n )−1r̄(Ω)

s

1 + S(Ω)(k)λ(Ω)
maxv

(Ω)H
max (R(Ω)

n )−1v(Ω)
max

.

(17)
Finally, the beamformer output at frequency Ω is calculated
as

y(Ω)(k) = w(Ω)
opt (k)

H
x(Ω)(k). (18)

3. EVALUATIONS

The evaluation of the proposed beamformer is made in a
real car hands-free situation. A six-sensor array is mounted
on the visor at the passenger side in a Volvo station wagon.
Data are gathered on a multi-channel DAT-recorder with a
sampling rate of 12 kHz and the car is moving at a constant
speed of 110 km/h. The circular area of the target signal is
30 cm from the center of the array with a radius of 10 cm.

The performance of the proposed microphone array is
measured in terms of the suppression level, defined as

SP = 10 log10

( ∫ π

−π
P̂in,n(ω)dω∫ π

−π
P̂out,n(ω)dω

)
− 10 log10(Cd)

(19)
where P̂in,n(ω) and P̂out,n(ω) are the spectral power es-
timates of the reference sensor observation and the output
respectively, when the noise is active alone and Cd is a con-
stant to normalize the source’s gain. The performance is
also given in terms of the distortion measure, defined as

DS =10 log10

(
1
2π

∫ π

−π

|(1/Cd)P̂in,s(ω)−P̂out,s(ω)|dω

)
(20)

where P̂in,s(ω) and P̂out,s(ω) are the spectral power esti-
mates of the reference sensor observation and the output re-
spectively, when the source is active alone.

Table 1 shows the suppression and distortion levels for a
noisy environment with a signal to noise ratio (SNR) of -
7 dB and the number of subbands increases from 16 to 128.
The decimation factor in this case is made over-sampled and
fixed at D = M

2 for all number of subbands. The purposes
of over-sampling are to reduce the aliasing effects between
the adjacent subbands and to ensure the sufficiency of data
in estimating the statistics. It can be seen from the table
that the proposed structure achieves a significant suppres-
sion level while maintaining a small distortion level. More-
over, the suppression and distortion levels are significantly
improved when the number of subbands increases from 16
to 64. These levels are, however, approximately the same
when the number of subbands increases from 64 to 128. In
view of this, the following plots are for the case with 64
subbands.
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Fig. 3. Time domain plots of the original source, received
signal and the beamformer output.

No. of subbands Suppression, SP (dB) Distortion, DS (dB)

16 18.99 -25.96
32 21.28 -25.38
64 21.61 -27.87
128 21.48 -27.85

Table 1. Suppression and distortion levels for different
number of subbands.

Fig. 3 shows the time domain plots of the original speech,
noisy speech and the beamformer output. Evidently even in
such adverse condition, the proposed beamformer still man-
ages to suppress the background noise significantly whilst
maintaining good target signal integrity.

Fig. 4 plots the output powers for both the source and
noise before and after the processing. The plot shows that
noise is suppressed uniformly across the frequency and the
processed target signal remains a faithful replica of the orig-
inal source.

4. CONCLUSIONS

A new space constrained adaptive beamformer with PSD
update has been presented. The novelty of the structure lies
in the PSD update of the target signal. By doing so, the PSD
of the beamformer’s output signal is weighted efficiently in
the temporal domain, thus yielding a very good target signal
integrity. Besides that, the incorporation of the space con-
straints in its formulation offers robustness and accurately
captures the source of interest. The combination of both the
PSD and the space constraints make full use of the available
spatio-temporal domain. Results show that the beamformer
manages to achieve an impressive noise suppression level
up to 21 dB in a real car environment.
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Fig. 4. Output powers of the source and the noise before
and after processing.
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