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ABSTRACT

This paper proposes a blind calculation method for the poles
common to multiple signal transmission paths. In the field
of room acoustics, the poles correspond to the mode fre-
quencies that are determined by room size and shape, and
they do not change when source and receiver locations change.
Information on these acoustic poles is useful for many appli-
cations, including echo cancellation and sound field equal-
ization in a room. Conventional pole estimation methods re-
quire a priori measurement of the room transfer functions.
This paper proposes a new method for the blind calculation
of the poles, where the poles are calculated solely from the
observed signals. Simulation results show that the proposed
algorithm provides precise estimates of the common poles.

1. INTRODUCTION

In the field of room acoustics, poles correspond to mode fre-
quencies determined according to the room dimensions, and
do not change when source and receiver locations change.
Information on these acoustic poles is useful for various ap-
plications. For example, when designing an echo canceller
[1], this information can be effectively utilized to reduce
the number of parameters that represent echo paths, and
hence to increase the convergence speed. As another ex-
ample, acoustic common poles are also useful for multiple
point equalization, which achieves flat sound pressure dis-
tribution [2].

This paper proposes a new method for blindly calculat-
ing the poles common to multiple transmission paths, with-
out a priori measurements. This transfer function measure-
ment is necessary in conventinal methods. Moreover, the
pole estimates obtained with the proposed method are free
from any influence of the zeros in the room transfer func-
tions. These two features have not been achieved with con-
ventional methods.

2. CALCULATION OF COMMON POLES OF
MULTIPLE TRANSFER FUNCTIONS

We deal with a single-source and two-microphone system
as shown in Figure 1. When the AR part that corresponds to
acoustical poles is denoted as 1 − a(z), two transfer func-
tions g1(z), g2(z) are described as [1],

gi(z) =
hi(z)

1 − a(z)
(i = 1, 2). (1)

where hi(z) denotes J-th polynomials,
a(z) = a1z

−1 + a2z
−2 + · · · + aKz−K .

We assume h1(z) and h2(z) have no common zeros [3].

e(n) 

g1(z)

g2(z)

Fig. 1. A single-source two-microphone acoustic system.

2.1. Conventional method for calculating common poles

The conventional method for calculating common poles, re-
ported in [2], is described in the following. This approach
was originally derived for multiple point sound pressure equal-
ization.

The common AR coefficients that correspond to the com-
mon poles can be estimated as those that minimize the mean
squares cost function ε as,

ε =
M∑
i=1

∞∑
k=0

e2
i (k),

=
M∑
i=1

∞∑
k=0

[
gi(k) −

K∑
n=1

angi(k − n)

]2

. (2)
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where
gi(n) is a measured impulse response obtained by i-th source-
microphone pairs (1 ≤ i ≤ M ),
an are common AR parameters,
M is the number of source-microphone pairs.

We deal with the case M = 2 hereafter. To minimize
this cost function, all the partial derivatives of the cost func-
tion with respect to an must be equal to zero. Then, the
common AR coefficients an can be expressed as

a = (WT W)−1WT v, (3)

where

a = [a1, a2, · · · , aK ],
W = [G1,G2]T ,

v = [g1,g2]T ,

gi = [gi(1), gi(2), · · · , gi(N − 1), 0, 0, · · · , 0]T ,

Gi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

gi(0) 0 · · · 0
gi(1) gi(0) · · · 0
...

...
...

gi(K − 1) gi(K − 2) · · · gi(0)
...

...
...

gi(N − 1) gi(N − 2) · · · gi(N − K)
0 gi(N − 1) · · · gi(N − K − 1)
...

...
...

0 0 · · · gi(N − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Since this method uses actual impulse responses to estimate
the poles, it is necessary to measure them in advance.

2.2. Proposed method

The proposed method blindly calculates common poles with-
out measuring transfer functions g1(z) and g2(z), assum-
ing that a stationary white noise is input into the system.
Furthermore, common poles are expected to be estimated
precisely even when using fewer transfer functions than re-
quired with the conventional method.

The signals observed by the two microphones are de-
noted as x1(n) and x2(n). Here, we introduce the two chan-
nel linear prediction matrix Q that is defined by the folow-
ing equation,

xT
n = xT

n−1Q, (4)

where

xn = [x1(n), · · · , x1(n − m), x2(n), · · · , x2(n − m)]T .

By multiplying xn−1 with this equation from the left-hand
side and employing expectation, the above equation can be
written as,

E < xn−1xT
n >= E < xn−1xT

n−1 > Q, (5)

where E < · > is an expectation operator.
Here, it should be noted that the acoustic system shown

in Fig. 1 is equivalent to that shown in Fig. 2. In Fig. 2, sig-
nal u(n) produced by AR process 1/(1−a(z)) is input into
the two transfer functions h1(z) and h2(z). Then, signal
u(n) is expressed by the following equation.

un = CTun−1 + en, (6)

where

un = [u(n), u(n − 1), ..., u(n− m − J + 1)]T ,

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 a2 · · · aK 0 0
1 0 · · · 0

0 1 0
...

...
. . .

...
...

... 1
...

...
...

. . . 0
0 0 · · · 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

, en =

⎡
⎢⎢⎢⎣

e(n)
0
...
0

⎤
⎥⎥⎥⎦ ,

e(n) is stationary white noise with unit variance, and
m + J ≥ K .

1/(1-a(z))
e(n)                            u(n)

h1(z)

h2(z)

x1(n)

x2(n)

Fig. 2. An acoustic system equivalent to the system shown
in Fig 1.

Then, xn−1 can be written as,

xT
n−1 = uT

n−1H, (7)

where
H = [H1,H2],

Hi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hi(0) 0 · · · 0
hi(1) hi(0) · · · 0
...

...
...

hi(m) hi(m − 1) · · · hi(0)
...

...
...

hi(J − 1) hi(J − 2) · · · hi(J − m − 1)
0 hi(J − 1) · · · hi(J − m)
...

...
...

0 0 · · · hi(J − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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It should be noted that the number of columns of matrix H
is greater than the number of rows, i.e., 2(m+1) > m+J .
Matrix Q in Eq. (5) is calculated, in a minimum-mean-
square-error (MMSE) sense, as follows.

Q = (E < xn−1xT
n−1 > +δ2I)−1E <xn−1xT

n>,(8)

= (E < HTun−1uT
n−1H > +δ2I)−1

E < HTun−1uT
nH >,

= (HT E < un−1uT
n−1 > H + δ2I)−1

HT E < un−1uT
n−1 > CH,

where I is the unit matrix, and δ is a small positive number.
Since E < un−1uT

n−1 > can be assumed to be positive-
definite, it can be replaced by UT U, where U is a matrix.
Then, matrix Q can be written as,

Q = (HTUT UH + δ2I)−1HTUTUCH. (9)

If we asumme that matrix H has a full row-rank, using the
definition of the Moore-Penrose inverse matrix [4], we can
rewrite the above equation as,

Q = lim
δ2→0

(HTUT UH + δ2I)−1HTUT UCH,

= (UH)+UCH,

= HT (HHT )−1(UT U)−1UTUCH,

= HT (HHT )−1CH, (10)

where A+ denotes the Moore-Penrose inverse matrix of A.
The following relation holds for the non-zero eigenval-

ues of matrix Q [4],

λ(Q) = λ(HT (HHT )−1CH),
= λ(HHT (HHT )−1C),
= λ(C), (11)

where λ(A) are the non-zero eigenvalues of matrix A. As
a result, the following relationship is derived.

fc(Q) ≡ fc(C) ≡ 1 − a(z), (12)

where fc(A) is the characteristic polynomial of matrix A.
That is, the characteristic polynomial of matrix Q is equiv-
alent to the AR polynomial 1 − a(z) [5]. Hence, the AR
polynomial is blindly calculated from observed signals.

The proposed algorithm is summarized as follows.

1. The two-channel linear prediction matrix Q is calcu-
lated using output signal vectors xn and xn−1 by Eq.
(8).

2. The characteristic polynomial of matrix Q is calcu-
lated to obtain the AR polynomial 1 − a(z) that cor-
responds to the common poles.

3. SIMULATION

A simulation was performed to show the validity of the
proposed algorithm. Figure 3 shows the simulation setup,
where a simple sound field is surrounded by three reflec-
tors. The transfer functions gi(z) in Eq. (1) were simulated
as follows. As the MA part, hi(z), we simulated the initial
reflections by the image method [6]. The AR part, 1−a(z),
was obtained based on the theoretical resonance frequencies
calculated by fn = nc/2L, where L is the distance between
the two opposing walls, c is sound velocity, and n is an in-
teger (e.g. [7]). These conditions are shown in Table 1.

Figure 4 (a) shows the impulse responses of g1(z) and
g2(z), and (b) shows their frequency responses. The im-
pulse responses are truncated at the point where the magni-
tude of the response seems sufficiently small. We use these
two impulse responses to estimate the common AR param-
eters by the conventional method.

The Spectral Distortion (SD) [8], shown in the follow-
ing, was used to evaluate the results.

SD =

√√√√ 1
F

F−1∑
f=0

{20 log |P (f)| − 20 log |P̂ (f)|}2, (13)

where
P (f) = 1/(1 − a(ejfπ/F )) is the given all-pole spectrum
P̂ (f) = 1/(1 − â(ejfπ/F )) is the estimated all-pole spec-
trum.

Reflectors

g1(z)

                g2(z)

L= 1m

Fig. 3. Simulation setup

Table 1. Simulation conditions

J Order of zeros 10
K Order of poles 6
f1 Lowest resonance frequency 171.5 Hz
fn Resonance frequencies f1, 2f1, 3f1

N Order of impulse responses 80
fs Sampling frequency 2 kHz

Figure 5 (a) shows the given and estimated all-pole spec-
tra provided by the conventional method. Here, the AR or-
der is set to match the actual AR order, i.e., K = 6. The
figure shows the discrepancy between the estimated and ref-
erence responses. In this case, SD = 3.8 [dB] was obtained.

Next, the proposed calculation was tested under the same
situation. We used a stationary white noise signal with the
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(a) Impulse responses.
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(b) Frequency responses.

Fig. 4. Time and frequency responses of g1(z) and g2(z).

normal distribution, zero mean, and unit variance. Using
this random signal as the input, we estimated the AR coeffi-
cients from the two channel output signals. Since this input
signal is not perfectly random, it is necessary to suppress the
effect of imperfect randomness on the estimation precision.
To achieve this, the estimated AR parameters were obtained
by averaging over 20 repetitions.

Figure 5 (b) shows the given and estimated all-pole spec-
tra obtained with the proposed method. The output signal
length m was adjusted to 9 to meet the above mentioned re-
quirement, i.e., m ≥ J − 1. It is shown that the estimated
spectrum agrees quite well with the actual response, and the
obtained SD value is much smaller than the conventional re-
sult. In this case, the estimated AR order is K̂=18. We have
also confirmed that the similar accuracy was achieved in the
case of K̂ ≥ 18.

For comparison, a simulation was also performed for
K̂=6, which corresponds to the estimated order matched
with the actual order. It should be noted that this does not
meet the above requirement for the proposed method. The
result is shown in Fig. 5 (c). In this case, the response ex-
hibits degradation. This result suggests that the proposed
method must meet the above mentioned requirement, m ≥
J − 1, m ≥ K − J , even when the estimated AR order is
greater than the actual AR order.

4. CONCLUSIONS

This paper proposed a blind calculation method for estimat-
ing common poles based on linear prediction, where no a
priori measurements of the transfer functions are needed.
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(a) Spectrum with the conventional method (SD=3.8 dB).
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(b) Spectrum with the proposed method (SD=0.1 dB).
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(c) Spectrum with the proposed method in the case of
improper parameter setting (SD= 6.2 dB).

Fig. 5. Estimated all-pole spectra (The reference spectrum
is shown by a dashed line in each figure).

Furthermore, by utilizing the characteristic polynomial of
the linear prediction matrix, the AR polynomial is directly
estimated so that the pole estimation precision is unaffected
by the zeros that may exist in the transfer functions. Simu-
lation results showed that the proposed algorithm provides
precise estimates of the common poles. Future work will
include improvements designed to cope with severe calcu-
lation errors, for example, when the impulse responses be-
come much longer.
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