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ABSTRACT

Recently, a generalized noise reduction scheme has been proposed,
called the Spatially Pre-processed Speech Distortion Weighted
Multi-channel Wiener Filter (SP-SDW-MWF). Compared to GSC
with Quadratic Inequality Constraint (QIC-GSC), the SP-SDW-
MWF reduces more noise, for a given maximum speech distor-
tion level. In this paper, we develop time-domain and frequency-
domain stochastic gradient implementations of the SP-SDW-
MWF. Experimental results with a hearing aid show that the pro-
posed stochastic gradient algorithm preserves the benefit of the
SP-SDW-MWF over the QIC-GSC, while its computational cost
is comparable to the NLMS based Scaled Projection Algorithm
(SPA) for QIC-GSC.

1. INTRODUCTION

Noise reduction algorithms are crucial for hearing impaired peo-
ple to improve speech intelligibility in background noise. Multi-
microphone systems exploit spatial in addition to temporal and
spectral information of the desired and noise signal and are thus
preferred to single microphone procedures. For small-sized arrays
such as hearing aids, multi-microphone noise reduction goes to-
gether with an increased sensitivity to errors in the assumed signal
model such as microphone mismatch, reverberation, etc. [1]

In [2], a generalized noise reduction scheme has been proposed,
called the Spatially Pre-processed, Speech Distortion Weighted,
Multi-channel Wiener Filter (SP-SDW-MWF). It encompasses the
GSC and an MWF technique [3, 4] as extreme cases and allows
for inbetween solutions such as the Speech Distortion Regularized
GSC (SDR-GSC). The SDR-GSC or more general the SP-SDW-
MWF adds robustness against model errors to the GSC by taking
speech distortion explicitly into account in the design criterion of
the adaptive stage. Compared to the widely studied QIC-GSC, the
SP-SDW-MWF achieves a better noise reduction performance, for
a given maximum speech distortion level.

The recursive matrix-based implementations of the SDW-MWF
[3, 4, 5] can be applied to implement the SP-SDW-MWF [2].
However, in contrast to the GSC and the QIC-GSC [6], no cheap
stochastic gradient implementation is available yet. In this paper,
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Fig. 1. Spatially Pre-processed SDW-MWF.

we derive time-domain and frequency-domain stochastic gradient
algorithms for the SP-SDW-MWF and compare their performance
to the NLMS based SPA [6]. Experimental results demonstrate
that the proposed stochastic gradient based SP-SDW-MWF out-
performs the SPA, while its computational cost is comparable.

2. SPATIALLY PRE-PROCESSED SDW-MWF

The SP-SDW-MWF [2], described in Figure 1, consists of a fixed,
spatial pre-processor, i.e., a fixed beamformer A(z) and a blocking
matrix B(z), and an adaptive SDW-MWF [2, 3, 4]. In the sequel,
an endfire array is assumed and the desired speaker is assumed to
be in front at 0◦. Given M microphone signals1

ui[k] = us
i [k] + un

i [k], i = 1, ..., M, (1)

the fixed beamformer A(z) creates a so-called speech reference
y0[k] = ys

0[k] + yn
0 [k], by steering a beam towards the front and

the blocking matrix B(z) creates M − 1 so-called noise refer-
ences yi[k] = ys

i [k] + yn
i [k], i = 1, ..., M − 1 by steering ze-

roes towards the front. During periods of speech, the references
yi[k] consist of speech + noise, i.e., yi[k] = ys

i [k] + yn
i [k], i =

0, ..., M − 1. During periods of noise, only the noise component
yn

i [k] is observed. We assume that the second order statistics of
the noise are sufficiently stationary so that they can be estimated
during periods of noise only.

The SDW-MWF filter wk ∈ R
ML×1[2] provides an estimate

wT
k yk of the noise contribution yn

0 [k−∆] in the speech reference
by minimizing the cost function J(wk)

J(wk) =
1

µ
E{

∣∣∣wT
k ys

k

∣∣∣2}︸ ︷︷ ︸
ε2

d

+ E{
∣∣∣yn

0 [k − ∆] − wT
k yn

k

∣∣∣2}︸ ︷︷ ︸
ε2

n

. (2)

1In the sequel, the superscripts s and n are used to refer to the speech
and noise contribution of a signal.
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with

wT
k =

[
wT

0 [k] wT
1 [k] ... wT

M−1[k]
]
, (3)

wi[k] =
[

wi[0] wi[1] ... wi[L − 1]
]T

, (4)

yT
k =

[
yT

0 [k] yT
1 [k] ... yT

M−1[k]
]
, (5)

yi[k] =
[

yi[k] yi[k − 1] ... yi[k − L + 1]
]T

, (6)

This estimate is then subtracted from the speech reference, as indi-
cated in Figure 1, to obtain a better speech signal z[k]. The term ε2

d

represents the speech distortion energy and ε2
n the residual noise

energy. The parameter µ ∈ [0,∞) trades off between noise re-
duction and speech distortion. Depending on the setting of 1

µ
and

the presence of the filter w0 on the speech reference, the GSC, the
(SDW-)MWF or the SDR-GSC is obtained [2].

• Without w0, the SP-SDW-MWF corresponds to an SDR-
GSC: the ANC design criterion is supplemented with a reg-
ularization term 1

µ
ε2

d that limits speech distortion due to sig-
nal model errors. For µ = ∞, the GSC solution is ob-
tained. Compared to the QIC-GSC, the SDR-GSC obtains
better noise reduction for small signal model errors, while
guaranteeing robustness against large model errors.

• Since the SP-SDW-MWF takes speech distortion explicitly
into account in the design criterion, a filter w0 on the speech
reference can be added. For µ = 1, we obtain an MWF.
Compared to the SDR-GSC, performance is less affected by
model errors.

3. STOCHASTIC GRADIENT ALGORITHM (SG)

3.1. Time-Domain (TD) implementation

A stochastic gradient algorithm approximates the steepest descent
algorithm

wn+1 = wn + ρ

(
−∂J(w)

∂w

)
w=wn

, (7)

using an instantaneous gradient estimate. Replacing the iteration
index n by a time index k and leaving out the expectation values,
we obtain the following update equation for the cost function (2):

wk+1 = wk + ρ
{
yn

k (yn
0 [k − ∆] − yn,T

k wk) − rk

}
, (8)

rk =
1

µ
ys

ky
s,T
k wk, (9)

with wk, yk ∈ R
NL×1, where N denotes the number of input

channels to the adaptive filter (N = M if w0 is present, N =
M − 1 if w0 is absent). For 1

µ
= 0 and no filter w0, (8) reduces

to an LMS type update formula often used in GSC, which is then
operated during periods of noise only. The additional term rk in
(8) limits speech distortion due to signal model errors.

Equation (8) requires knowledge of the correlation matrix
ys

ky
s,T
k or E{ys

ky
s,T
k } of the clean speech. In practice, this in-

formation is not available. To avoid the need for calibration,
L × 1-dimensional speech + noise signal vectors yi[k], i =
M − N, ..., M − 1 are stored in a circular speech + noise buffer
B1 ∈ R

Lbuf1×N during processing as in [7]. During periods of
noise only (i.e., when yi[k] = yn

i [k], i = 0, ..., M − 1), the filter
wk is updated using the following approximation for (9):

wk+1 =wk + ρ
{
yn

k (yn
0 [k − ∆] − yn,T

k wk) − rk

}
, (10)

rk = λ̃rk−1 + (1 − λ̃)
1

µ

(
ybuf1

k ybuf1,T
k − yn

kyn,T
k

)
wk,(11)

where ybuf1
k is a speech + noise vector constructed from data in

the buffer B1. In the sequel, a normalized step size ρ is used:

ρ =
ρ′

ζk + yn,T
k yn

k + δ
(12)

ζk = λ̃ζk−1 + (1 − λ̃)
1

µ

∣∣∣ybuf1,T
k ybuf1

k [k] − yn,T
k yn

k

∣∣∣ . (13)

Additional storage of noise only vectors yn
i , i = 0, · · · , M−1 in

a second buffer B2 ∈ R
Lbuf2×M allows to adapt wk also during

periods of speech + noise, using

wk+1 =wk+ρ
{
ybuf2

k (ybuf2
0 [k − ∆] − ybuf2,T

k wk) − rk

}
,(14)

rk = λ̃rk−1 + (1 − λ̃)
1

µ

(
yky

T
k − ybuf2

k ybuf2,T
k

)
wk, (15)

with ybuf2
k a noise vector constructed from data in the buffer B2.

Remark: For λ̃ = 0 and µ > 1, an alternative stochastic gra-
dient algorithm similar to [7] can be derived from (10)-(15) by
invoking some independence assumptions. However, its perfor-
mance was found to be worse than algorithm (10)-(15) [8].

For λ̃ = 0, the estimate (11), (15) of rk is quite bad due to large
differences between the rank-one matrices yn

i yn,T
i and yn

j yn,T
j at

different time instants i and j. This results in a large excess error,
especially for small µ and large step sizes ρ′ [8]. Using an estimate
of the average correlation matrix E{ys

ky
s,T
k } in (9), i.e.,

rk=
1

µ

1

K

(
k∑

l=k−K+1

ybuf1
l ybuf1,T

l −
k∑

l=k−K+1

yn
l yn,T

l

)
wk, (16)

would significantly improve the performance, but requires expen-
sive matrix operations. Therefore, assuming that wk varies slowly
in time, (11), (15) is - especially for small λ̃ - a good approxi-
mation of (16) without matrix operations. For stationary noise, a
small K or λ̃ (i.e., K = 1/(1 − λ̃) ∼ ML) suffices [8]. In prac-
tice, the speech and the noise signals are often spectrally highly
non-stationary (e.g., multi-talker babble noise) while their long-
term spectral and spatial characteristics such as the positions of
the sources usually vary more slowly in time. Spectrally highly
non-stationary noise can then still be spatially suppressed by using
an estimate of the long-term speech correlation matrix in rk (see
(9)), i.e., by setting K = 1/(1 − λ̃) � ML.

3.2. Frequency-Domain (FD) implementation

To speed-up convergence and reduce complexity, the stochastic
gradient algorithm (10)-(14) is implemented in the frequency-
domain, using overlap-save. Algorithm 1 summarizes the FD im-
plementation. Note that the FD-SG algorithm implicitly averages
the gradient estimate and hence, (16) over K = L samples. To
obtain the same time constant in the averaging operation of Ri[k]
as in the TD-SG algorithm, λ should equal λ̃L.

4. COMPUTATIONAL COST

Table 1 summarizes the computational cost (expressed in number
of real operations2 per second (Ops/s)) of the TD-SG and FD-SG
implementation of the SP-SDW-MWF. The sampling frequency
fs equals 16 kHz. We assume that one complex multiplication is
equivalent to 4 real multiplications and 2 real additions. A 2L-
point FFT of a real input vector requires 2L log2 2L real MACs

2Counted as the number of real multiply-accumulates, divisions, etc.
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Algorithm 1 Frequency-domain implementation
Initialization and matrix definitions:

Wi[0] =
[

0 · · · 0
]T

, i = M − N, ..., M − 1
Pm[0] = δm, m = 0, ..., 2L − 1;
F = 2L × 2L DFT matrix;

g =

[
IL 0L

0L 0L

]
; k =

[
0L IL

]
;

0L = L × Lmatrix with zeros; IL = L × L identity matrix
For each new block of ML input samples:
If noise detected:

d[k] =
[

y0[kL − ∆] · · · y0[kL − ∆ + L − 1]
]T

Yn
i [k] = diag

{
F

[
yi[kL − L] · · · yi[kL + L − 1]

]T
}

Store input data Yn
i [k], d[k] in noise buffer B2

Create Yi[k] from data in speech+noise buffer B1

If speech detected:

Yi[k] = diag
{
F

[
yi[kL − L] ... yi[kL + L − 1]

]T
}

Store input data Yi[k] in speech + noise buffer B1

Create Yn
i [k], d[k] using data from noise buffer B2

Update formula:

Wi[k + 1] = Wi[k] + FgF−1Λ[k]
{
Yn,H

i [k]E[k] − Ri[k]
}

,

Ri[k] = λRi[k−1]+(1−λ)
1

µ

(
YH

i [k]E2[k] − Yn,H
i [k]E1[k]

)
with

E[k] = FkT

(
d[k] − kF−1

M−1∑
j=M−N

Yn
j [k]Wj [k]

)

E1[k] = FkT kF−1
M−1∑

j=M−N

Yn
j [k]Wj [k] = FkT e1[k]

E2[k] = FkT kF−1
M−1∑

j=M−N

Yj [k]Wj [k] = FkT e2[k]

Step size Λ[k]:

Λ[k]=
2ρ′

L
diag

{
P−1

0 [k], ..., P−1
2L−1[k]

}
Pm[k]= γPm[k − 1] + (1 − γ) (P1,m[k] + P2,m[k])

P1,m[k]=
∑ ∣∣Y n

j,m

∣∣2
P2,m[k]=λP2,m[k − 1] + (1 − λ)

1

µ

∣∣∣∑(
|Yj,m|2 − ∣∣Y n

j,m

∣∣2)∣∣∣
Output z[k]:

y0[k] =
[
y0[kL − ∆] · · · y0[kL − ∆ + L − 1]

]T

• If noise detected: z[k] = y0[k] − e1[k]

• If speech detected: z[k] = y0[k] − e2[k]

(assuming the radix-2 FFT algorithm). Comparison3 is made with
standard NLMS based ANC and the NLMS based SPA [6]. The
NLMS based SPA is translated to the frequency domain by the
following equations:

3The complexity of the NLMS ANC and NLMS based SPA represents
the complexity when the adaptive filter is only updated during noise only
periods. If the adaptive filter is also updated during speech + noise periods
additional operations are required to compute the output [8].

Algorithm Complexity (ops/s) Mops/s
(e.g., M = 3, L = 32, fs = 16 kHz)

TD-ANC (3(M − 1)L + 2)fs 3.1

TD-SPA (5(M − 1)L + 4)fs 5.2

TD-SG (9NL + 10)fs 9.4(a), 14.0(b)

FD-ANC [(6M − 2) log2 2L + (12M − 4)]fs 2.0

FD-SPA [(6M − 2)fs log2 2L + (16M − 8)]fs 2.2

FD-SG [(6N + 10) log2 2L + (30N + 12)]fs 3.3(a), 4.3(b)

Table 1. Complexity of the TD-SG and FD-SG SP-SDW-MWF
((a) N = M − 1, (b) N = M ) compared to ANC and SPA.

‖w[k]‖2
2 = wT [k]w[k] =

1

2L

M−1∑
i=1

WH
i [k]Wi[k], (17)

If ‖w[k]‖2
2 ≥ β2 : Wi[k] ← β

Wi[k]

‖w[k]‖2

. (18)

Table 1 indicates that the TD-SG SDR-GSC (i.e., without filter
w0 and hence, N = M − 1) is about twice as complex as the
NLMS-based SPA and about three times as complex as the stan-
dard ANC. The SP-SDW-MWF with extra filter w0 is a bit more
complex. The increase in complexity of the frequency-domain im-
plementations is smaller. For M = 3 and L = 32, the FD-SG
SDR-GSC and SP-SDW-MWF only require 3.3 Mops/s and 4.3
Mops/s, respectively.

5. EXPERIMENTAL RESULTS

This section compares the performance of the FD-SG SP-SDW-
MWF and the FD-NLMS SPA for different parameter settings (i.e.,
1/µ and β2), based on experimental results with a Behind-The-Ear
(BTE). For a fair comparison, the FD-NLMS SPA is - like the FD-
SG SP-SDW-MWF -also adapted during speech + noise using data
from a noise buffer.

5.1. Set-up and performance measures

A three-microphone BTE has been mounted on a dummy head
in an office room. The desired source is positioned in front of
the head (i.e., at 0◦) and consists of sentences spoken by a male
speaker. The noise scenario consists of three multi-talker babble
noise sources, positioned at 75◦, 180◦and 240◦. The desired sig-
nal and the total noise signal both have a level of 70 dB SPL at
the center of the head. For evaluation purposes, the speech and
noise signal have been recorded separately. In the experiments,
the microphones have been calibrated in an anechoic room while
the BTE was mounted on the head. A delay-and-sum beamformer
is used as a fixed beamformer. The blocking matrix B pairwise
subtracts the time aligned calibrated microphone signals. The fil-
ter length L = 32, the step size ρ′ = 0.8 (with γ = 0.95) and
λ = 0.999.

To assess the performance, the intelligibility weighted signal-
to-noise ratio improvement ∆SNRintellig is used, defined as

∆SNRintellig =
∑

i

Ii(SNRi,out − SNRi,in), (19)

where Ii expresses the importance of the i-th one-third octave band
with center frequency f c

i for intelligibility [9], and where SNRi,out

and SNRi,in is the output and input SNR (in dB) in that band, re-
spectively. Similarly, we define an intelligibility weighted spectral
distortion measure, called SDintellig, of the desired signal as

SDintellig =
∑

i

IiSDi (20)
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Fig. 2. Performance of FD-SG SP-SDW-MWF in a multiple noise
source scenario.
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Fig. 3. Performance of FD-NLMS SPA in a multiple noise source
scenario.

with SDi the average spectral distortion (dB) in i-th one-third
band, calculated as

SDi =
1

(21/6 − 2−1/6) fc
i

∫ 21/6fc
i

2−1/6fc
i

|10 log10 Gs(f)| df, (21)

with Gs(f) the power transfer function of speech from the input to
the output of the noise reduction algorithm. To exclude the effect
of the spatial pre-processor, the performance measures are calcu-
lated w.r.t. the output of the fixed beamformer.

5.2. Experimental results

Figure 2 depicts ∆SNRintellig and SDintellig of the FD-SG SDR-GSC
and SP-SDW-MWF with w0 as a function of the trade-off param-
eter 1

µ
. The effect of a gain mismatch υ2 of 4 dB at the second

microphone is depicted too. Figure 3 shows the results of the FD-
NLMS based SPA of (17)-(18) for different constraint values β2.

In this scenario, the GSC still offers good noise suppression for
a mismatch of 4 dB, at the expense of a large distortion. Both, the
SPA and the stochastic gradient based SP-SDW-MWF increase the

robustness of the GSC (i.e., the SDR-GSC with 1
µ

= 0): distortion

decreases with increasing 1
µ

and decreasing β2. The SPA is more

conservative than the SDR-GSC: the constraint value β2 should be
chosen so that the maximum permissible speech distortion is not
exceeded for the largest model error, e.g., 5 dB SDintellig for a gain
mismatch up to 4 dB. This goes at the expense of less noise re-
duction in case of smaller model errors (e.g., ∆SNRintellig = 4 dB
for β2 = 0.4). The SDR-GSC on the other hand only puts em-
phasis on speech distortion if required, i.e., when the amount of
speech leakage is large, so that a better noise reduction is obtained
for small model errors (e.g., ∆SNRintellig between 4 dB and 7.4 dB
for 1

µ
= 0.5). The SP-SDW-MWF offers more noise suppression

at even larger model errors: the SP-SDW-MWF with w0 is -in
contrast to the SDR-GSC and the SPA- hardly affected by micro-
phone mismatch. In the absence of model errors, the SP-SDW-
MWF with w0 achieves a slightly worse performance than the
SDR-GSC. With w0, the estimate (11)-(15) of 1

µ
E{ysys,T }wk

is less accurate due to the larger dimensions of 1
µ
E{ysys,T } and

the large contribution of the speech reference in 1
µ
E{ysys,T }.

In short, the proposed stochastic gradient based SP-SDW-MWF
preserves the benefit of the exact SP-SDW-MWF over the QIC-
GSC, while its complexity is comparable to NLMS-SPA.
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