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ABSTRACT

This paper presents a method for solving the permutation
problem of frequency domain blind source separation (BSS)
when source signals come from the same or similar direc-
tions. Geometric information such as the direction of ar-
rival (DOA) is helpful for solving the permutation prob-
lem, and a combination of the DOA based and correlation
based methods provides a robust and precise solution. How-
ever when signals come from similar directions, the DOA
based approach fails, and we have to use only the correla-
tion based method whose performance is unstable. In this
paper, we show that an interpretation of the ICA solution
by a near-field model yields information about spheres on
which source signals exist, which can be used as an alter-
native to the DOA. Experimental results show that the pro-
posed method can robustly separate a mixture of signals ar-
riving from the same direction.

1. INTRODUCTION

Independent Component Analysis (ICA) [1] in the fre-
quency domain is one of the most important and practical
methods for Blind Source Separation (BSS) of convolutive
mixtures. A convolutive mixture in the time domain is con-
verted into multiple instantaneous mixtures in the frequency
domain, and a complex-valued ICA algorithm for instan-
taneous mixtures can be applied for each frequency. This
approach has the advantage of fast convergence, which en-
ables realtime processing [2]. However, a permutation am-
biguity in the ICA solutions is a serious problem. We need
to align separated signals so that a separated signal in the
time domain contains frequency components from the same
source signal. This problem is known as the permutation
problem of frequency domain BSS.

The other approach for separating convolutive mixtures
is time domain BSS, which does not suffer the permutation
problem, however it takes much more computational time
than frequency domain BSS [3]. Therefore we adopt the
frequency domain approach.
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Many methods have been proposed for solving the per-
mutation problem. The use of geometric information, such
as beam patterns [4, 5, 6], direction of arrival (DOA) and
source locations [7], is one of the effective approaches. An-
other approach is based on the inter-frequency correlations
[8, 9], which uses the inter-frequency correlations of out-
put signal envelopes to align the permutations. However the
correlation based method is not robust since a misalignment
at one frequency bin causes consecutive misalignments.

We have proposed a robust and precise method by com-
bining the DOA based method and the correlation based
method, which almost completely solves the permutation
problem for two sources that come from different direc-
tions [10]. However the DOA based method fails in the
first stage when the signals come from the same or similar
directions. In such cases we have to rely on the correlation
based method that is unstable.

In this paper, we show that the interpretation of the
ICA solution by a near-field model yields information about
spheres on which source signals exist. This information can
substitute for the DOA when signals come from the same
direction.

2. FREQUENCY DOMAIN BSS

When the source signals are s;(t)(¢ = 1, ..., N), the signals
observed by microphone j are z;(¢)(j = 1, ..., M), and the
separated signals are y(¢)(k = 1,..., N), the BSS model
can be described as:

2 (t) = SO (hyi + 50) (), (1)
ye(t) = S0 (wig * ;) (8), )

where h; is the impulse response from source ¢ to micro-
phone j, wy; are the separating filters, and * denotes the
convolution operator.

Figure 1 shows the BSS flow in the frequency domain.
A convolutive mixture in the time domain is converted into
multiple instantaneous mixtures in the frequency domain.
Therefore, we can apply an ordinary ICA algorithm [1] in
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Fig. 1. Flow of frequency domain blind source separation

the frequency domain to solve a BSS problem in a reverber-
ant environment. Using a short-time discrete Fourier trans-
form, the model is approximated as:

X(w,n) = H(w)S(w, n), 3)

where w is the angular frequency, n represents the frame in-
dex, H(w) is the mixing system in the frequency domain,
S(w,n) = [S1(w,n), ..., Sn(w,n)]T is the source signal,
and X(w,n) = [X1(w,n), ..., Xpr(w,n)]T denotes the ob-
served signals. The separating process can be formulated in
each frequency bin as:

Y(w’n) - W(W)X(wan)a “4)

where Y (w,n) = [Yi(w,n),...,Yy(w,n)]T is the esti-
mated source signal, and W (w) represents the separating
matrix. W (w) is determined so that Y;(w, n) and Y;(w, n)
(i # j) become mutually independent.

The ICA solution suffers permutation and scaling am-
biguities. This is due to the fact that if W(w) is a solu-
tion, then D(w)P(w)W (w) is also a solution, where D(w)
is a diagonal complex valued scaling matrix, and P (w) is
an arbitrary permutation matrix. We thus have to solve the
permutation and scaling problems to reconstruct separated
signals in the time domain.

There is a simple and reasonable solution for the scal-
ing problem: D(w) = diag{[P(w)W (w)] 1}, which is ob-
tained by the minimal distortion principle (MDP) [11], and
we can use it. In contrast, the permutation problem is com-
plicated, and many solutions have been proposed.

3. PROPOSED METHOD

3.1. Invariant in ICA solution

If a separating matrix W (w) is calculated successfully and
it extracts source signals with scaling ambiguity, there is a
diagonal matrix D(w), and D(w)W(w)H(w) = I holds.
Because the scaling matrix determined by the MDP does
not satisfy this equation, and D(w) cannot be determined
in general, we cannot obtain H(w) simply from the ICA
solution. However, the ratio of elements in the same column
H,;(w)/Hj:;(w) is invariable in relation to D(w), and given

y(m)

Fig. 2. Example of spheres determined by eq.(8) (p; =
[0,0.15,0], pj» = [0,—0.15,0])
by
Hji(w) _
Hji(w)

(W (w)D w)]ji _
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(W (w)];
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where [-];; denotes the ji-th element of the matrix. We can
estimate several types of geometric information related to
source signals by using this invariant. The estimated infor-
mation can be used for solving the permutation problem.

Previously we have shown that the DOA of source sig-
nals can be estimated by comparing (5) with a far-field
model [10, 12]. The interpretation of the ICA solution by a
near-field model yields other geometric information as de-
scribed below.

&)

3.2. Estimation of sphere with ICA solution

When we adopt the near-field model, including the attenua-
tion of the wave, H ;;(w) is formulated as:

B 1
 lai —pjll

where p; represents the location of microphone j, q; is the
location of source ¢, and c is the speed of wave propagation.
By taking the ratio of (6) for a pair of microphones j and 5’
we obtain:

Hii(w) erwe (lai=psll) ©6)

Hj(w) — ||qZ _pj’He]wcfl(”qi_p].”_”qi—pjlH). (7)
Hjpi(w)  lai — pjll
By using the modulus of (7) and (5), we have:

lai —pyll _ | [(WHw)]ji
lai =il [IWH (W)l
By solving (8) for q;, we have a sphere whose center O; ;;/
and radius R; ;; are given by:
1

Oijir =Pi — 53—
0"

®)

(Pj — Pj)s )
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Fig. 3. Room layout

Table 1. Experimental conditions
Sampling rate | 8 kHz
Data length 2s
Window Hanning
Frame length 1024 point (128 ms)
Frame shift 256 point (32 ms)
ICA algorithm | Infomax (complex valued)

Rijy = ||;f¢i1

4,33"
where 7; ;v = |[W ™ (w)];i/[W =1 (w)];:]. Therefore, we
can estimate a sphere (O, j;, R; j;) on which q; exists by
using the separation matrix W (w) obtained by ICA and the
locations of the microphones p; and p;.. Figure 2 shows
an example of spheres determined by (8) for various ratios

(pjr — Pj)lls (10

Tijj'-

3.3. Solving permutation problem

The estimated spheres can be utilized for sorting or classi-
fying the output signals of ICA, thus we can solve the per-
mutation problem even when signals come from the same
or similar directions. However, geometric information such
as the DOA or the sphere tends to have a large error in a re-
verberant environment, especially for lower frequency bins.
Accordingly, we use the geometric information based so-
lution only for frequency bins whose geometric informa-
tion is highly reliable. Then we apply the correlation based
method to the rest of frequency bins. The correlation based
method solves the permutation problem by maximizing the
inter-frequency correlation for neighboring or harmonic fre-
quency bins [10].

4. EXPERIMENTS

We carried out experiments with 2 sources and 2 micro-
phones using speech signals convolved with impulse re-
sponses measured in a room. The room layout is shown
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Fig. 4. Experimental results. SIRs are evaluated for 12 com-
binations of source signals with various values for threshold
parameter c.

in Fig. 3. The sources are located in the same direction for
the microphone pair. The reverberation time of the room
was 130 ms at 500 Hz. Other conditions are summarized in
Table 1. The experimental procedure is as follows.

First, we apply ICA to observed signals z;(t)(j = 1, 2),
and calculate separating matrix W (w) for each frequency
bin. Then we estimate spheres by using W ~!(w). We use
the radiuses of two spheres Rl’lg and ]?2,12, and the permu-
tation is aligned so that 1%2712 > 1%1712. In order to evalu-
ate the reliability of the solution provided by the estimated
spheres, we introduce a threshold parameter « > 1, and
we accept solutions only for frequency bins that satisfy the
condition 1%2712 / 1%1712 > «. We then apply the correlation
based method to the rest of frequency bins. The permutation
problem is solved simply by using the geometric informa-
tion when o = 1, and simply by using the correlation when
o = 00.

The performance is measured by the signal-to-inference
ratio (SIR). The portion of y(t) that comes from s;(t) is
calculated by yg,(t) = Z?:l(wkj % hj; * $;)(t), and the
output SIR for y(¢) is defined as:

SIRoy = 1010g[3>, yin(t)®/ 22, (3 2k yki(1))?] (dB).

We define the SIR as an average of SIR o1 and SIR3 in or-
der to cancel out the effect of input SIR. We measured SIRs
for 12 combinations of source signals using two male and
two female speakers and varying the threshold parameter a.

5. RESULTS AND DISCUSSION

Figure 4 shows the experimental results. When we solve
the permutation problem using only the estimated spheres
(v = 1), the performance is insufficient. In contrast, the
performance we obtain using only the correlation (v = 00)
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Fig. 5. Example of spatial gain patterns of separating filters
(f =1000 Hz)

is unstable. The combination of both methods yields good
and stable performance. These tendencies are similar to the
results we obtain when we use DOAs as geometric informa-
tion [10].

We obtained good performance when the threshold pa-
rameter o was relatively large. When o was 8 to 16, the por-
tion of frequency bins whose permutation was determined
by the geometric information was about 1/5 to 1/10.

Finally, we show the gain patterns of the separating sys-
tem. Figure 5 shows the spatial gain patterns of separating
filters in one frequency bin (f = 1000 Hz). Microphone 1 is
used as a reference, i.e., when a signal observed by micro-
phone 1 is directly outputted, the gain is O dB. We can see
that the separating filter forms a spot null beam focusing on
the jammer signal.

6. CONCLUSION

The interpretation of the ICA solution by a near-field model
yields information about spheres on which source signals
exist. This information can be used as an alternative to
the DOA when signals come from the same or similar di-
rections. Experimental results showed that the proposed
method can robustly separate a mixture of signals originat-

ing from the same direction. Some sound examples can be
found on our web site [13].

The proposed method is valid for a microphone pair
with a large spacing. When we can use many microphone
pairs and the DOAs are available through the use of micro-
phone pairs with a small spacing, the source locations can
be estimated in more detail. We have succeeded in sepa-
rating a mixture of six speech signals arriving from vari-
ous directions, even when two of them come from the same
direction, by using microphone pairs with small and large
spacings [14, 15].
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