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ABSTRACT

This paper describes an approach to achieving a flexible lay-

out of microphones on the surface of a spherical microphone

array for beamforming. Our approach achieves orthonor-

mality of spherical harmonics to higher order for relatively

distributed layouts. This gives great flexibility in micro-

phone layout on the spherical surface. One direct advan-

tage is it makes much easier to build a real world system,

such as those with cable outlets and a mounting base, with

minimal effects on the performance. Simulation results are

presented.

1. INTRODUCTION

Spherical arrays of microphones are recently becoming the

subject of some study as they allow omnidirectional sam-

pling of the sound-field, and may have applications in sound-

field capture. The paper [2] presented a preliminary analy-

sis of such arrays, and showed how sound can be analyzed

using them. This paper performed an elegant separation of

the analysis and beamforming parts by using a modal beam-

former structure. Here, we propose an extension of this ap-

proach that allows flexible microphone placements.

This paper is organized into four parts. First, we will

present the basic principle of beamformer of spherical mi-

crophone array. Second, we will give a theoretical analysis

of the discrete system. In that part, we analyze how the or-

thonormality error is introduced into the system, how it gets

amplified and how it affects on performance. To cancel the

error noise, we design a flexible and optimal system in the

third part. In the fourth part, we will provide the design

example and simulation results.

2. BACKGROUND

The basic principle of Ref. [2] is to make use of the or-

thonormality of spherical harmonics to decompose the sound-

field arriving at a spherical array. Then the orthogonal com-

ponents of the soundfield are linearly combined to approxi-

mate a desired beampattern.
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2.1. Scattering Theory

For a unit magnitude plane wave k, incident from direction
( k, k), the incident field at a point ( s, s, rs) is

pi=e
ik·rs=4

X
n=0

injn(krs)
nX

m= n

Y mn ( k, k)Y
m

n ( s, s),(1)

where jn is the spherical Bessel function of order n, Y
m
n is

the spherical harmonics of order n and degree m. At the
same point, the field scattered by the rigid sphere of radius

a is [1]:

ps= 4
X
n=0

in
j
0

n(ka)

h0n(ka)
hn(krs)

nX
m= n

Y mn ( k, k)Y
m

n ( s, s).(2)

The total field on the surface (rs = a) of the rigid sphere is:

pt = (ps + pi)|rs=a (3)

= 4
X
n=0

inbn(ka)
nX

m= n

Y mn ( k, k)Y
m

n ( s, s),

bn(ka) = jn(ka)
j
0

n(ka)

h0n(ka)
hn(ka), (4)

where hn is the spherical Hankel function of the first kind.

2.2. Soundfield Decomposition and Beamforming

If we assume that the pressure recorded at each point ( s, s)
on the surface of the sphere s, is weighted by

Wm
0

n0 ( s, s, ka) =
Y m

0

n0
( s, s)

4 in0bn0(ka)
. (5)

Then making use of orthonormality of spherical harmonics:Z
s

Y mn ( s, s)Y
m
0

n0 ( s, s)d s = nn0 mm0 (6)

the total output from a pressure-sensitive spherical surface

is:

P =

Z
s

ptW
m
0

n0 ( s, s, ka)d s = Y
m
0

n0 ( k, k) (7)
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This shows the gain of the plane wave coming from ( k, k),
for a continuous pressure-sensitive spherical microphone is¯̄̄
Y m

0

n0
( k, k)

¯̄̄
. Since an arbitrary real function F ( , )

can be expanded in terms of complex spherical harmonics,

we can implement arbitrary beampatterns. For example, an

ideal beampattern directed at a direction ( 0, 0):

F ( , ) =

½
1, ( , ) = ( 0, 0)
0, otherwise

(8)

can be expanded into:

F ( , ) = 2
X
n=0

nX
m= n

Y mn ( 0, 0)Y
m

n ( , ) (9)

The advantage of this system is that it can be steered into

any 3D directions digitallywith the same beampattern. This

is for an ideal continuous microphone array on spherical

surface.

3. ORTHONORMALITY ERROR ANALYSIS

For a real-world system, however, we have a discretely sam-

pled array with S microphones mounted at ( s, s), s =
1, 2, ..., S. To keep the same performance, Ref. [2] uses
special discrete points at which the following discrete ana-

log of orthogonality holds:

4

S

SX
s=1

Y mn ( s, s)Y
m
0

n0 ( s, s) = nn0 mm0 (10)

(Note that the formula (4) in [2], for discrete orthonormality

has a typographical error.)

Unfortunately, it can be easily proved that for any possi-

ble layout with limited number of points, (10) cannot be sat-

isfied exactly even for low order spherical harmonics (See

Appendix A). Instead, we have:

4

S

SX
s=1

Y mn ( s, s)Y
m
0

n0 ( s, s) = nn0 mm0+²mm
0

nn0 ,(11)

where ²mm
0

nn0
is the error caused by discreteness. Ideally, we

want the error to go to zero in the limit of an infinite number

of microphones on each continuous points on the spherical

surface:

lim
S

²mm
0

nn0 = 0, n,m, n0,m0. (12)

Now, we will see how this error could degrade the per-

formance of soundfield decomposition. To extract the com-

ponent of order n0 and degree m0 from the soundfield (3),

we consider individual integrals of (7):

Pmn =

Z
s

pt
m

n

Y m
0

n0
( s, s)

4 in0bn0(ka)
d s (13)

where:

pt
m

n = 4 i
nbn(ka)Y

m

n ( k, k)Y
m

n ( s, s). (14)

Using S discrete points, we have:

Pmn = Y mn ( k, k)

½·
inbn (ka)

in0b
n
0 (ka)

¸
( nn0 mm0 + ²mm

0

nn0 )

¾
.(15)

We notice that:·
inbn (ka)

in0b
n
0 (ka)

¸
nn0 mm0 = nn0 mm0 (16)

So, (15) can be rewritten as:

Pmn = Y mn ( k, k){ nn0 mm0+

·
inbn(ka)

in0bn0(ka)

¸
²mm

0

nn0 }(17)

The second term is the noise caused by orthonormality error.

We call it the orthonormality error noise (OEN) which is

inherent with the microphone array layout. To prevent it

from damaging the orthonormality, we must have:¯̄̄
¯ inbn(ka)in0bn0(ka)

²mm
0

nn0

¯̄̄
¯¿ 1 (18)

So, we get:

|²mm
0

nn0 | ¿

¯̄̄
¯bn0(ka)bn(ka)

¯̄̄
¯, n, n0,m,m0 (19)

Since bn decays very quickly with respect to n as shown
in Fig.1, for a given microphone number and layout, we can-

not extract the high order component of soundfield if (19)

fails. In addition, we can see (19) is independent of magni-

tude of the incoming sound wave. That means: even if the

microphones have recorded the high order components, the

system may be unable to extract them.

There exist several schemes which might be used to min-

imize this error. In [2], the 32 microphones are positioned

at the center of the faces of a truncated icosahedron. In

[3], several options are mentioned including equiangular

grid layout [5] and an intuitive equidistance layout [4]. The

common limitation of those schemes is that they are inflex-

ible. If a patch of the spherical surface is inappropriate

for mounting microphones, the orthonormality error may be

large. This will destroy the beampattern.

4. OPTIMAL LAYOUT ANDWEIGHTS

In this section, we will formally define the optimal layout.

We proposed an iterative approach to find it. Then we solve

for the optimal weights. The OEN can be cancelled com-

pletely to order N using S = (N + 1)2 microphones posi-
tioned on the spherical surface. We denote the positions as

( s, s), s = 1, 2, ...(N + 1)2.
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Fig. 1. bn(ka) for orders from 0 to 30.

For each Y m
0

n0
( s, s), we introduce a correcting co-

efficient. In total we have (N + 1)2 × (N + 1)2 coef-
ficients, Cm

0

n0
( s, s), for (s = 1, 2, ...(N + 1)2; n0 =

0, 1, ...N ;m0 = n0, ...n0). So that

4

S

SX
s=1

Cm
0

n0 ( s, s)Y
m

n ( s, s)Y
m
0

n0 ( s, s) = nn0 mm0

(20)

(S = (N + 1)2; s = 1, 2, ...S;

n = 0, 1, ...N ;m = n, ...n;

n0 = 0, 1, ...N ;m0 = n0, ...n0 )

We can simplify (20) further by defining:

D
m
0

n0 =

Cm
0

n0
( 1, 1)Y

m
0

n0
( 1, 1)

Cm
0

n0
( 2, 2)Y

m
0

n0
( 2, 2)

...

Cm
0

n0
( S , S)Y

m
0

n0
( S , S)

(21)

and

Y=

Y 00 ( 1, 1) Y 00 ( 2, 2) ... Y 00 ( S , S)
Y 1
1 ( 1, 1) Y 1

1 ( 2, 2) ... Y 1
1 ( S , S)

... ... ... ...
Y N
N
( 1, 1) Y N

N
( 2, 2) ... Y N

N
( S , S)

So we have:

4

S
Y ·Dm

0

n0 = [ 0n0 0m0 , 1n0 ( 1)m0 , ... Nn0 Nm0 , ]0(22)

To have a stable solution forDm
0

n0
, we have to find S points

on the spherical surface such that the condition number ofY

is reasonably small. We use an iterative approach to search

for these optimal points. First, we distribute the S points
on the spherical surface randomly, then we can pick a ran-

dom moving direction for each point. We also can use some
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Fig. 2. Iteratively search for the optimal nodes which mini-

mize the condition number ofY

heuristic criteria to decide the directions. Then we move

all points a step forward and check the condition number

of Y. If we get smaller condition number, then move for-

ward again, if not, choose another directions. We do this

iteratively until the condition number converges. A typical

search process is shown in Fig. 2.

For each n0 andm0, (22) is a linear systemwith (N+1)2

constraints and (N + 1)2 unknowns. So we can solveDm
0

n0

exactly and uniquely. Now the orthonormality holds to or-

der N exactly for (N + 1)2 arbitrarily positioned micro-
phones.

Once we have solved (22), we can use the results in

the real system implementation. We just need to replace

the original weight (5) on each microphone to the modified

weight

Wm
0

n0 ( s, s, ka) =
Dm

0

n0
( s, s)

4 in0bn0(ka)
(23)

5. FLEXIBLE DESIGN EXAMPLE

Our algorithm can be used to design flexible microphone

layout. Suppose we want to build a spherical array with

radius 10cm using 64 microphones. The microphone posi-

tions are restricted in the area ( /4 ,
).We use our iterative algorithm to compute the 64 nodes
and 64×64 weights.
Fig. 3 is the resulting layout for 64 microphones. Fig. 4

is the three dimensional beampattern of order four at 1.5kHz.

6. CONCLUSIONS

This paper describes a flexible and optimal design of spher-

ical microphone arrays. We analyzed the effects of discrete
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Fig. 3. Optimal layout of 64 microphones on the surface

defined as ( /4 , )

orthonormality error and proposed a linear constraint ap-

proach to get exact orthonormalities. We then used an it-

erative method to search for the optimal microphone layout

with respect to the condition number. We demonstrated the

effectiveness of our algorithms by performing a practical

design.
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A. PROOF OF THE ORTHONORMALITY ERROR

Assume we can use S microphones to satisfy the following
orthonormalities:(

4
S

PS

s=1 Y
0
2 ( s, s)Y

0
0 ( s, s) = 0

4
S

PS

s=1 Y
0
3 ( s, s)Y

0
1 ( s, s) = 0

(24)

We have:( PS

s=1 cos
2

s =
1
3PS

s=1 cos
4

s =
1
5

(25)

Now we check the following orthonormality:

4

S

SX
s=1

Y 02 ( s, s)Y
0
2 ( s, s) = 1

4

S

Ã
1

4

r
5
!2Ã

9
SX
s=1

cos4 s 6
SX
s=1

cos2 s + S

!
= 1

(use (25)) S = 1 (26)

It is obvious that (26) and (25) are contradictory.
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