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ABSTRACT
The digital waveguide mesh is a modeling technique suit-

able for simulation of wave propagation in an acoustic sys-

tem. In this work artificial boundary conditions are con-

structed for the digital waveguide mesh. Absorbing bound-

ary conditions are evaluated and a new method for adjust-

ing the reflection coefficient at values � � 	 � � is intro-
duced. The frequency dependent error level of this method

was minimized with use of a second-order FIR filter.

1. INTRODUCTION

The digital waveguide mesh is a wave-based acoustic mod-

eling technique [1, 2] that, when compared to geometric

acoustic methods such as ray-tracing and the image source

method, has the benefit of incorporating diffraction and in-

terference effects [2, 3] as a natural consequence of the

model’s emerging behaviour. The method has been ex-

tended to two and three dimensions from the digital wave-

guide method [4] used for simulation of one-dimensional

musical instruments, such as plucked string instruments and

woodwinds.

The original rectangular mesh suffers from direction de-

pendent dispersion. This can be reduced by using trian-

gular or interpolated mesh structures and frequency warp-

ing techniques [5]. These methods enhance the behavior of

the mesh as a model of wave propagation in a homogenous

medium. The same dispersion also affects the reflections at

the boundaries.

Currently there are only few studies of boundary con-

ditions in the mesh. In this work approximation methods

of absorbing and reflecting boundary conditions are eval-

uated. Absorbing boundaries are needed for mesh trunca-

tion, when calculations of infinite space are made using fi-

nite mesh sizes. Different reflection characteristics are of
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use in simulations where obstacles, such as walls and fur-

niture in room acoustics, are involved. Earlier methods for

simulating such boundaries gave rise to large magnitude er-

rors. In this paper a new method which diminishes the error

dramatically is introduced and evaluated.

This paper is organized as follows. Section 2 describes

the interpolated rectangular mesh structure. The novel

method for arbitrary boundary conditions is presented in

Section 3. The new technique is validated by simulations

discussed in Section 4. Section 5 concludes the article.

2. INTERPOLATED MULTI-DIMENSIONAL
WAVEGUIDE MESH

A multi-dimensional rectangular digital waveguide mesh is

a regular array of 1-D digital waveguides arranged along

each perpendicular dimension, interconnected with unit de-

lay elements. The difference equation for the nodes of an

N-dimensional rectangular mesh is given by:

 � � � � � �� � �� � � �  � � � ! � � !  � � � ! % � ( (1)

where  represents the signal pressure at a junction at time
step � , subscript ) denotes the junction to be calculated and
index * denotes its % �

axial neighbours [2].

In the interpolated mesh there are also connections from

a node to all its diagonal neighbours [5]. This way the di-

rection dependent dispersion error created in the rectangu-

lar mesh is effectively diminished. The difference equation

for the nodes of a two dimensional interpolated rectangular

mesh is given by:

 � � � � � %, -� � � � -�/ � � 1
�

2 /  �
2 / � � ! � � !  � � � ! % � ( (2)

where 1
�

2 / are weighting coefficients for each node [5] and, � 8 is the number of wave propagation directions.
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3. BOUNDARY CONDITIONS IN THE
INTERPOLATED DIGITALWAVEGUIDE MESH

The first step towards frequency and angle dependent reflec-

tion conditions is to develop a technique for an arbitrary re-

flection coefficient. In this work we construct a new method

based on absorbing boundary condition presented earlier by

Murphy and Mullen [6].

The basic absorbing boundary condition (denoted as

zero-order ABC) has been derived from the discrete border

condition of the acoustical pressure,

� � � � � 
 � � � � � � � � � � � � � � � � � � � � � � (3)

where subscript � denotes the border node, subscript � rep-
resents its perpendicular neighbour and � is the reflection
coefficient [2]. The two terms on the right side of Eq.

(3) represent the sound pressure in front of the boundary

one time step ago and the sound pressure reflected from

the boundary two time steps ago respectively. Hence, with

� 
  the last term is absent and we get the absorbing con-
dition � � ! " $ & � � � 
 � � � � � � � ' (4)

In simulations it has been noticed that the zero-order

condition in Eq. (4) gives rise to reflections [2] and better

absorption is needed for creating an adequate non-reflecting

border. One possible solution is the one-way approxima-

tion of the wave equation obtained by calculating the bor-

der node value � � ! " $ & � � � as a Taylor series approximation
of the past value of the adjacent node � � � � � � � [6]:

� � ! " $ & � � � 
 � � � � � � � � ) � � + � � � � � � � (5), . 01 3 � + +� � � � � � � , . 4
5

3 � + + +� � � � � � � 7 7 7
For example, assuming that ) � 
 � , the first order solution
of the series can be written as difference equation:

� � ! " $ & � � � � 
 � � � � � � � � � + � � � � � � (6)
 � � � � � � � � > � � � � � � � � � 1 � � � � � B

 � � � � � � � � � � 1 � � � � � '

Reflecting and absorbing boundary conditions may be

combined as presented in Eq. (3) to receive reflection coef-

ficients with values  D � D � although the results are far
from satisfactory. An alternative method was developed as

follows. By substituting value � 
 � into Eq. (3) yields the
following equation for a rigid wall

� � ! G H J � � � 
 � � � � � � � � � � � � � � � � ' (7)

Experimentally it can be seen that the use of this condition

results in total reflection with zero absorption. By similarity

it is presumed to be possible to combine � � ! G H J in Eq. (7)
with the first order solution of the Taylor series absorbing
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Fig. 1. Test setup in the 2-D mesh. The source and the
receivers were placed in line (a). The reflection from the

boundary was compared to the level of a freely radiated sig-

nal measured at location R’ in a larger mesh to avoid un-

wanted reflections (b).

boundary condition � � ! " $ & in Eq. (6). The combination is
weighted by the reflection coefficient � as:

� � ! G � � � 
 � � � ! G H J � � � � � � � � � � � ! " $ & � � � (8)
 � > � � � � � � � � � � � � � � � � B �� � � � � > � � � � � � � � � � 1 � � � � � B

 � � � � � � � � � � � � � � � � � �

� � � � � � 1 � � � � � '
To further improve the behaviour of the boundary con-

ditions, a second-order linear-phase FIR filter is introduced.

The last term in Eq. (7) therefore becomes:

Q
� " � � � � � � � � � R T V W1 > � � � � � � � � � � � � � X � B � (9)

where Q
� " is a filter coefficient,  Z Q

� " Z � , to be opti-
mized numerically. Now Eq. (7) becomes:

� � ! G H J � � � 
 � � � � � � � � �
Q

� " � � � � � � � � (10)� R T V W1 > � � � � � � � � � � � � � X � B '
The absorbing boundary condition is treated similarly.

The Eq. (6) therefore becomes:

� � ! " $ & � � � � 
 � � � � � � � � �
Q

� " � 1 � � � � � � (11)� R T V W1 > � � � � � � � � �
5

� � � X � B '
Note that the filtering and hence the absoprtion is now

obtained through using consecutive neighbouring nodes,

rather than with values of the same node at adjacent time

steps as in Eq. (10). This improves the performance of the

filter, but can not be done for the reflecting boundary con-

dition directly because the node � � , the value of which is
filtered, is at the boundary of the mesh, and hence only has

one neighbour.
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Fig. 2. Reflections from the Taylor-series absorbing bound-
aries of orders 0 � � � 3 in digital waveguide mesh for angles
of incidence � � � � and � � � 
 � .

4. SIMULATION SETUP AND RESULTS

Simulations were executed in a 2-D mesh of 600 � 300
junctions. The mesh was initialized with a low-pass fil-

tered impulse at the point �  � � �  � � . Receivers were lo-
cated at the same distance from the boundary as indicated

in Fig. 1(a). The direct component from source to receiver

was removed from the measurement signals. To resolve the

achieved absorption the resulting signal level of the reflec-

tion was compared to the level of a signal that had passed

the same distance without any reflections as illustrated in

Fig. 1(b). A Hanning function was used for windowing the

last half of the signal to avoid the cutting error in calculation

of the spectra.

4.1. Absorbing boundary condition

The simulation was run in two dimensions on both interpo-

lated and non-interpolated rectangular meshes. The simu-

lation results for the Taylor series absorbing boundary con-

dition at two incidence angles are presented in Fig. 2. In

all the figures the frequency band is shown up to 0.25 the

normalized relative frequency since that is the upper fre-

quency limit of the mesh. It can be seen from the results

that the first order and the second order solutions reduce the

reflected signal power significantly compared to the zero or-

der solution, although the third order solution does not give

a corresponding advantage. Thus the second order solution

was selected as optimal for future reference. Note that ac-

cording to Fig. 2 the interpolated mesh does not change the

behavior of reflection at angle of incidence � � � � .
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Fig. 3. Maximum absolute and relative error of the received
reflection coefficient as a function of reflection coefficient �
in the original boundary condition function (3).

4.2. Arbitrary reflection coefficient

The boundary conditions for freely adjustable values of �
were tested in the same two dimensional mesh as the ab-

sorbing boundaries. The maximum error was searched at

angles � � � � � 
 � � . Greater incidence angles were not
considered as the directional error caused by the change

from two dimensional mesh to one dimensional boundary

condition becomes high near the angle � � � 
 � .
As indicated in Fig. 3, results given by Eq. (3) are er-

roneus especially with small reflection coefficients. Com-

paring with Fig. 4 shows that the new method given by

Eq. (8) is better. The phase delay characteristics of the two

methods were also compared. The behaviour of the signal

phase is not ideal with either one of the conditions but the

new method is as good as the old.

When using the FIR based boundary condition substi-

tuting Eqs. (10) and (11) into Eq. (8) the maximum error

obtained at the measurement points was minimized by op-

timization of the filter coefficient �
� � . It was noted that

the filter behaved as expected although the optimal value of

�
� � was heavily frequency dependent. For stability the val-
ues were restricted to � � �

� � �  . The full range of values
were used for � � � � � � � � �  . At frequencies � " � � � � the
coefficient was at the minimum and at � $ � �  the coeffi-
cient was at its maximum allowed value.

To make the best use of the filtered boundary condition,

the simulation was divided into two frequency bands about

� � � � � ' . To minimize the maximum error the filter coef-
ficient was set to �

� � � � for the lower band and �
� � � 

for the upper band. The level of the relative error was di-

minished through the use of the filter as shown in Fig. 5.
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Fig. 4. Maximum absolute and relative error of the received
reflection coefficient as a function of reflection coefficient �
in the linear combination boundary condition (8).

Frequency bands, for which the maximum relative error

is below 15 % at reflection coefficient values � � � � � � � �
� � � and � � � � 	 are listed in Table 1. The table shows that
compared to the original method, the new boundary condi-

tions allow the use of remarkably smaller values of � .

5. CONCLUSION

This paper has developed and numerically experimented

with the Taylor series absorbing boundary conditions, as in-

troduced previously by Murphy and Mullen. A novel way

to create higher order reflecting boundaries with adjustable

reflection coefficients has been introduced. The main goal

was to calculate a linear combination of reflecting and ab-

sorbing boundary conditions. The performance of these

borders was improved by use of a second-order linear-phase

FIR filter. As the filter is most beneficial at the low frequen-

cies, the calculation was divided into two frequency bands.

In future this research will focus on issues of frequency

dependent and directional errors of both magnitude and

phase response of the presented boundary conditions.

Table 1. Frequency bands, for which the maximum relative
error is below 15 % for the three boundary conditions.

method � � � � � � � � � � � � � � 	
original - - � 
 � � � �
1st order � � � � 
 � � � � � � � � 
 � � � � � � � � 
 � � � �
filtered � � � � 
 � � � � � � � � 
 � � � � � � � � 
 � � � �
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Fig. 5. Maximum absolute and relative error of the received
reflection coefficient as a function of reflection coefficient � ,
when filter coefficient is �

� � � � at � � � � � � and �
� � � �

when �  � � � � .
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