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ABSTRACT

Cochlear implants are able to restore some degree of hearing 
to deafened individuals; however implant users are 
particularly susceptible to background noise.   The effect of 
noise can be assessed using vowel and consonant confusions 
measured in listening experiments.  This paper presents three 
signal processing methods developed to predict patterns in 
vowel and consonant confusion in noise for cochlear implant 
users.  Prediction performance is tested using the results of a 
listening experiment conducted with acoustic models of two 
cochlear implant speech processors and normal hearing 
subjects.  Confusion prediction is based on prediction metrics 
calculated using each method’s unique representation of the 
speech tokens. 

1.  INTRODUCTION 

Cochlear implants have been used successfully to restore 
some degree of hearing in severely deafened patients.  
Studies by numerous investigators have shown a high level of 
word and sentence recognition by cochlear implant patients 
in controlled listening experiments [1-3].  However, listening 
experiments and patient testimony indicate that cochlear 
implant patients are particularly susceptible to the deleterious 
effects of background noise, which cochlear implant patients 
must contend with in many everyday situations.       
 Listening experiments are conducted using a variety of 
speech materials, such as vowel and consonant sounds, 
monosyllabic words, and sentences.  Closed set tests, where 
subjects must select their response from limited options, 
allow for the analysis of confusions between tokens.  Results 
of a closed-set test can be represented in a confusion matrix, 
containing the number of occurrences of each possible token 
given/responded combination, with the correct identification 
of tokens presented along the diagonal.  The results can then 
be analyzed using information transmission analysis 
developed by Miller and Nicely [4], or other methods of 
classifying patterns of confusions. 
 Acoustic models of cochlear implant speech processors 
have been employed by many investigators to conduct 
listening experiments using normal-hearing subjects [e.g. 
5,6].  Acoustic models provide control over the experimental 
parameters, allowing for fixed conditions across subjects.  

The individual performance of cochlear implant patients can 
be affected by a variety of personal factors – age, duration of 
deafness, duration of implantation, etiology of deafness, 
electrode insertion depth, etc.  Using acoustic models with 
normal hearing subjects enables mitigation of these external 
factors, varying only the parameter of interest during testing.   
 The use of normal hearing subjects in listening 
experiments with acoustic models for investigations of 
cochlear implant speech recognition is a widely used and well 
accepted experimental method.  Many developments in 
cochlear implants have been made using acoustic models; for 
example, saturation of pitch as a function of pulse rate [7] 
and improved performance using a simple spectral mapping 
speech processor versus a feature extraction algorithm [8]. 
However, results of listening experiments using normal 
hearing subjects are often only indicative of trends in 
cochlear implant patient performance; absolute levels of 
performance tend to disagree. 
 In this study, signal processing techniques were 
developed to measure similarities between speech tokens 
processed by acoustic models for the purpose of predicting 
patterns of vowel and consonant confusions.  Prediction 
results were compared to confusion matrices generated from 
normal hearing subjects tested for vowel and consonant 
recognition in noise using two acoustic models.   
 The motivation for estimating trends in token confusions 
and overall confusion rate, based solely on information in the 
processed speech signal, is to enable preliminary analysis of 
speech materials prior to conducting listening experiments.  
Additionally, a method that estimates token confusions and 
overall confusion rate would have applications in the 
development of speech processing methods and noise 
mitigation techniques.  Sets of processed speech tokens that 
are readily distinguishable by the confusion prediction 
method should also be readily distinguishable by cochlear 
implant patients, if the prediction method is well developed 
and robust.

2.  LISTENING EXPERIMENT 

Twelve normal hearings subjects were tested for vowel and 
consonant recognition in noise with speech tokens processed 
using two different acoustic models.  The two acoustic 
models used in this experiment [9] are identified throughout 
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as 8F and 6/20F, and imitate the CIS [10] and SPEAK [11]
processing strategies. 

Each subject’s vowel and consonant recognition ability
was tested in quiet and at eight signal-to-noise (SNR) levels:
+10 dB, +8 dB, +6 dB, +4 dB, +2 dB, +1 dB, 0 dB, and –2 
dB.  Both the 8F and 6/20F implant models were used at each
SNR level, for a total of 18 test conditions. The vowel tokens
used in the listening experiment were {had, hawed, head, 
heard, heed, hid, hood, hud, who’d}.  The consonants tested
were {b, d, f, g, j, k, m, n, p, s, sh, t, v, z} presented in /aCa/
format.

Independently interchanging the order of test material
and acoustic model generates four possible experiment
sequences that are divided equally among the subjects to
neutralize any effects of experience with the previous model
or token set.  The experiment began with two repetitions of
the randomly ordered token set for training, followed by five 
repetitions of the randomly ordered token set for testing.
Subjects were tested at all noise levels with one token set / 
acoustic model combination before proceeding to the next set
of token materials.  Feedback was given during training, and
unlimited repeats were allowed in both training and testing. 
The experiment started in quiet and proceeded through the 
increasing noise levels, ending at -2 dB. 

Confusion matrices were compiled from results pooled 
across all subjects and noise levels.  Pooling across noise
levels was justified by information transmission analysis,
which indicated that the additive noise proportionally
affected all token features.  Hence, for noisier test conditions, 
the same patterns of confusions are expected, but larger in 
magnitude.  The resulting confusion matrices, separated by
test material and acoustic model, serve as the reference for 
measuring the confusion predictions using the signal
processing methods.

3.  CONFUSION PREDICTION METHODS 

Three signal processing methods were developed for 
predicting trends in vowel and consonant confusion matrices.
Confusion predictions were based on prediction metrics,
calculated as some measure of similarity or distance between 
two speech tokens.  The prediction methods utilize the
processed speech tokens with no additive noise, assuming
confusions are predominantly dictated by the token itself.
The process that was used for calculating these prediction
metrics for each of the three methods is detailed below.

3.1. Token envelope correlation 

Token envelope correlation (TEC) uses the discrete envelope
of the speech signal, an element of the acoustic model, for
calculation of the prediction metric. As equation 1 shows,
the prediction metric is the correlation coefficient between
the two speech tokens’ discrete envelopes.
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To address the issue of different token lengths, as well as
the fact that correlation is dependent on the alignment of the 
two signals, the discrete envelopes are aligned, according to 
the least cost mapping determined by dynamic time warping
[12], prior to calculating the correlation.  Dynamic time
warping was carried out using 512-sample windows of the 
processed speech signal with 50% overlap. Token envelope
correlation was included as a prediction method since
calculation of the prediction metric is based strictly on the
temporal information contained in the discrete envelope, thus 
testing the adequacy of using only temporal information for 
token discrimination.

3.2.  Dynamic time warping 

Dynamic time warping (DTW) calculates the prediction 
metric using the same Mel-cepstrum coefficients used to 
align the discrete envelopes in TEC [12].  DTW finds the 
least cost mapping through a cost matrix, where each entry is
the Euclidean distance (eq. 2) between the Mel-cepstrum
coefficients at two points in the token.
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The prediction metric M used in DTW is the value of the 
least cost mapping (eq. 3) through the cost matrix.

1, 1 1 1 , 1, , 1( , ) min( , , )     (3)i j i j i j i j i jD d x y D D D

, ( , )                (4)i j I JM D x y

Dynamic time warping was included in this study to provide 
a prediction metric calculated using windowed spectral 
information, to contrast the strictly temporal information
basis of the prediction metric for TEC. 

3.3.  Hidden Markov models 

Hidden Markov models (HMM) use the Mel-cepstrum
coefficients for calculating the prediction metric but adopt a 
statistical representation of the token [13]. In this study,
HMMs were trained using 100 sample speech tokens,
recorded by the first author, in order to develop the statistics 
of each token’s HMM.  Sets of HMMs were produced with
numbers of states ranging from two to four, and continuous 
observation probability functions assembled using two to six
Gaussian mixtures.

Two different methods were developed for calculating 
the prediction metric using the HMMs. Each method uses the
log likelihood of each token’s HMM producing a target 
observation for the prediction metric.  In the first method the 
target observation is a real speech token.  In the second 
method, the target observation is produced by sampling the 
HMM of the desired token.  This process is averaged over
100 trials to account for different realizations of the
stochastic model.  The results reported here use the first
method for calculating the prediction metric.  Additionally,
the HMMs used have three states, and observation
probabilities were generated using six Gaussian mixtures.
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Fig. 1. Near prediction of confusions.
Correct prediction of MFIR tokens (top)
and LFIR tokens (bottom).

Fig. 3.  (top) Trends in listening experiment
results. (bottom) Average confusion distance
computed using DTW.Fig. 2.  Token recognition rankings.
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4.  PREDICTION PERFORMANCE 

The confusion prediction methods were evaluated based on 
their ability to predict the most frequent incorrect responses 
(MFIRs) and least frequent incorrect responses (LFIRs) for 
each token presented.  MFIR prediction could have important
implications in designing speech processors and noise 
mitigation algorithms by identifying potentially problematic
token confusions.  Since for each token played there is 
usually only one or two dominant MFIRs, and a large number
of less likely responses, the prediction of MFIR tokens is
expected to be more robust, or at least more accurately
measured, than the LFIR token predictions.

Three tests were used to gauge prediction performance.
The first test measured successful near prediction of MFIRs
and LFIRs.  Successful near prediction is defined as the case
where one token in the set of MFIRs or LFIRs matches one 
token in the predicted MFIRs or LFIRs.  For example, if the 
two MFIRs for “head” are “hid” and “had”, then either “hid”
or “had” would have to be one of the predicted MFIRs for a 
successful near prediction.  Sets of two tokens were used for
vowel near predictions (25% of possible incorrect responses), 
three tokens for consonants (23% of possible incorrect
responses).  Measuring prediction performance using near 
predictions follows with predicting patterns in the confusions,
rather than strictly requiring that the predicted most or least
frequent incorrect response was indeed the most or least 
frequent incorrect response.  The purpose of measuring near
predictions is to test whether the methods are distributing the 
correct tokens to the extremes of the confusion response 
spectrum.

The second test measured each prediction method’s
ability to rank the tokens in terms of frequency of correct 
identification, corresponding to the values along the diagonal 
of the confusion matrix.  Rather than predicting the exact
frequency of identification, which would be dependent on
noise level, the prediction methods produced a ranking of the
tokens from least to most recognized (most often to least
often confused).  The predicted ranking was determined by
comparing differences in the prediction metrics to evaluate 
each token’s uniqueness.

The third test was a prediction of the differences in token 
correct identification, measured in the listening experiment as 
percent correct, for the different acoustic models and token 
sets.  The level of token correct identification was predicted 
by averaging the differences in the prediction metrics, used in
the second test, for all tokens.  Greater average difference 
would indicate more separation between tokens, which 
translates into less confusability, and hence better
recognition.

Results of the three prediction tests are shown in figures
1, 2 and 3.  DTW and HMM perform the near prediction task
(figure 1) better than TEC.  This result is shown most clearly
among the more legitimate MFIR near predictions, and is 
consistent across token sets and acoustic models.

Results shown in figure 2 are for the 8F model only,
since the pattern of results was consistent for both acoustic
models.  Token recognition ranking performance of the three 
prediction methods was compared by calculating the
Euclidean distance between the predicted recognition 
rankings and the true rankings.  HMM performed well on
vowels, ranking all but two tokens to within one spot of their
true ranks.  DTW and HMM performed similarly on
consonants, but not at the level of HMM for vowels.  A 
ranking of token length was included to expose any effects of 
token length on prediction method performance or potential
relationship to results of the listening experiment. Token
length did not factor into the recognition ranking 
performance; each method’s recognition rankings appear to
be a function primarily of the signal content, rather than 
signal length.

DTW was the only method successful at the third task of
predicting the differences in token correct identification for
the different acoustic models and token sets, and hence is the
only result shown.  The failure of TEC at the third task
supports the conclusion that the strictly temporal
representation lacks sufficient distinguishing characteristics. 
Based on performance in the first two tasks, the failure of 
HMMs was unexpected; however, follow-up work indicates 
HMM performance on the third task may improve with larger 
sets of training data.  The plot of DTW average confusion 
distance shown in figure 3 conforms to the overall trends 
seen in the listening experiment results.
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5.  DISCUSSION AND CONCLUSIONS 

The results of the prediction performance tests indicate that 
signal processing techniques utilizing the Mel-cepstrum 
representation of the speech waveform can forecast trends in 
token confusion.  The fitness of the cepstral-based predictors 
(DTW and HMM) versus the strictly temporal predictor 
(TEC) concurs with conclusions gathered from the listening 
experiment, where subjects performed better using the model 
that emphasized spectral resolution over the inclusion of all 
spectral information.  Further analysis of the TEC results may 
reveal subsets of tokens for which confusion predictions are 
more accurate.  In general, the cepstral representation of the 
tokens appears better suited for confusion prediction than the 
temporal envelope.  Consideration of other factors 
influencing subject responses, such as noise characteristics 
and experiment setup, might allow for more accurate 
prediction of confusions. 
 Prediction metrics generated by TEC and DTW are 
symmetric, a property not entirely consistent with the 
listening experiment confusion matrices.  It is assumed that 
the asymmetries in the confusion matrices are due to the other 
contributory factors mentioned previously.  However, even 
the symmetric prediction metrics should be capable of 
reasonably accurate confusion predictions.     
 The prediction methods were implemented such that the 
calculated prediction metrics were not biased by differences 
in token length.  However, the listening experiment token 
rankings shown in figure 2 indicate that differences in token 
length are a potential distinguishing feature for some tokens.  
Performance of the prediction methods used here may 
improve if the influence of token length is indeed present and 
were removed.  
 Development of a robust method to forecast confusions 
using only the processed speech signals would allow for a
priori analysis of new speech processing and noise mitigation 
schemes.  Further work is needed to improve the prediction 
performance reported in this paper, potentially through 
variations in the prediction methods or manner of token 
representation, as well as to include the additional 
contributory factors mentioned here.        
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