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ABSTRACT

A real time implementation and an evaluation of a Singular Value
Decomposition (SVD) based optimal filtering technique [1] for
noise reduction in a dual microphone BTE hearing aid is presented.
A method to improve the performance of a Voice Activity Detec-
tor (VAD) is described and evaluated physically. This method is
used in the real time implementation of the optimal filtering tech-
nique. A perceptual evaluation by normal hearing subjects is car-
ried out for single and multiple jammer sound sources with speech
weighted noise. The SVD-based technique can perform as well as
an adaptive beamformer [2] strategy in a single noise scenario (i.e.
the ideal scenario for the latter technique), and, can outperform the
beamformer technique in a multiple noise sources scenario. !

1. INTRODUCTION

Noise reduction strategies are important in hearing aid devices to
improve speech intelligibility in a noisy background [3]. Modern
digital hearing aids using dual-microphone configurations in a sin-
gle behind-the-ear (BTE) hearing aid allow to process more com-
plex noise reduction algorithms. Recently, adaptive noise reduc-
tion algorithms have been developed and implemented in hearing
aids. These algorithms can adapt to changing jammer sound direc-
tions and can track moving noise sources. In this study, an adaptive
procedure using a SVD-based optimal filtering technique is eval-
uated perceptually. This strategy was assessed theoretically and
physically in previous studies [1, 4, 5]. The optimal filtering strat-
egy works without assumptions about the desired target direction,
however, this strategy needs a robust VAD. In this paper, the SVD-
based optimal filtering technique is presented and the real time
implementation is described. Furthermore, a method to improve
the performance of the VAD is introduced. A physical evaluation
allows to assess the latter method. Finally, a perceptual evaluation
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with subjects is carried out by measuring the SNR-improvements
of the SVD-based technique, and comparing these to the results
obtained with an adaptive beamformer technique [2].

2. SVD-BASED OPTIMAL FILTERING TECHNIQUE

The SVD-based optimal filtering technique considered here, in
general reconstructs a speech signal si from noisy data uxp =
s + ng by means of an optimal filter Wy € RY*¥ using
Sk = WIV;/ FUg at time k. Using a Minimum Mean Square Error-
criterion (MMSE), the optimal filter Wy is equal to:

Wwr = E{up.up } ' (E{up.uf } — E{nk.n}}) (1)

Doclo and Moonen [1] use an interesting and useful simplification
in formula (1), where Wy r is derived from the GSVD (gener-
alized singular value decomposition) of the data matrices Uy, €
RP*YN and N, € RN (with p and ¢ typically larger than N),

such that £{uy.uf } = (UF.Uy)/pand E{n; .0} } = (N{.Ny)/q.

uy, is collected during speech-and-noise periods, while ng is col-
lected during noise periods. The GSVD of the matrices U, and
N is defined as

{ Uy = Y.diag{o;}.XT 2

Ny = V.diag{m}.XT

where Y € RP*Y and V € R?*Y are orthogonal matrices, X €
RY*N is an invertible matrix and Z¢ are the generalized singular
values. By substituting the above formulas in (1), we obtain:

pn;
Wyr = X*T.dmg{1 — 7—12}.XT (3)
q0;
By using a time constrained estimator, the energy of the signal
distortion €2 is minimized under the constraint that the residual
noise energy €2 stays under a threshold a [1].

Min € subject to e <a where 0<a<1l (4
Wwr

Thus, the filter Wy r becomes:
Wwr = X_T.diag{

2 2
q.0; — P T
———3%.X 5
q.07 + (u— p-n? } ®

The speech distortion parameter p € [0, 0] allows a trade-off
between signal distortion and noise reduction. If ;o = 1 the orig-
inal MMSE solution is obtained. More emphasis is put on the
signal distortion when p < 1 at the expense of decreasing the
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Fig. 1. Representation of the SVD-based optimal filtering tech-
nique.

noise reduction performance. The residual noise level is reduced
when p > 1 at the expense of increasing speech distortion. With
u — 00, all the emphasis is put on the noise reduction without
taking into account of the signal distortion. In a two microphone
application, the vector uy, € R™” takes the form:

ug = [ Uik U2k ] (6)
with
wr=[ wk) wyk—-1) ... wuEk-N+1)]" @

where the j refers to the j-th microphone. The vector ny, is simi-
larly defined. The computation of the optimal filter Wy i results
ina (2 x N)—taps estimator wyy r for the signal 8.

5(k)
5k + 1)
Sk=| . =Up.wwr (8

Sk+p—1)

where Si is an estimate for the (delayed version of the) speech
part of either front microphone or rear microphone depending on
the choice for wy r, which is one column of Wy . Maj et al.
[5] showed that using the middle column of Wy ¢ in the front mi-
crophone part, a good estimate of Sy, is obtained. This filter wy
(see figure 1) is as a two-channel filter, where each microphone
was filtered with a N-taps filter sz VP In our experiments N will
be 15.

®

w VviS’VD
WF =
WgVD

3. REAL TIME IMPLEMENTATION

The real time implementation of the SVD-based technique is illus-
trated in figure 2. Four steps are necessary to compute the filter
coefficients in real time:

e Step 1 : The VAD discriminates the speech-and-noise periods
from the noise periods of the noisy speech signals. The VAD used
in this study is based on the log-energy of the signal [2]. The log-
energy of the signal is computed with an overlap method on 128
samples. The decision of the VAD is taken from the computa-
tion of two thresholds namely, Tspeech and Tnoise. Tspeech and
Tnoise are computed from the statistics of the signal (the mean and
the variance). The function Signal equals the log-energy when the
energy of the signal increases, and drops with an exponential curve

Step 1: VAD

Step 2: Gradient G

Step 3: GSVD update

Step 4: Computation
of the filter wy.

Fig. 2. Real time implementation of the SVD-based optimal filter-
ing technique.

when the energy dropps. A function Offset preserves the VAD=1
during a number of samples when a noise period is detected. In
this way, a speech-and-noise period is still identified when there is
a silence in a word or a sentence. With these different thresholds,
the VAD works as follows:

- if Signal > Tspeech, a speech-and-noise period is detected,
VAD=1.

- if Tnoise > Signal and Offset=1, a noise period is detected
but VAD=1.

- if Tnoise > Signal and Offset=0, a noise period is detected,
VAD=0.
e Step 2 : Classification errors between the speech-and-noise pe-
riods and the noise periods occur with the VAD. If the speech-
and-noise periods are wrongly classified, speech-and-noise vec-
tors are added to the noise matrix (IN). In this case, the factor
F =1 —n?/0? of the filter Wyy 5 tends to be small (7 — 7?),
resulting in signal cancellation. Since F’ varies in time, the gradi-
ent GG of this factor can be measured during the processing:

o _ SN SN (1—ni/o?))
= 5t

If the gradient G is below a given threshold [, this means that the
VAD detects speech-and-noise periods instead of noise periods.
Then, a correction is made to the VAD and the decision made in
Step 1 is modified. Otherwise, when G > (3, the decision made in
Step 1 is kept valid.

e Step 3 : A recursive technique is used to approximate the SVD-
based optimal filtering technique. This technique is based on a

(10)

Jacobi-type GSVD-updating algorithm [6]. Recursive GSVD-updating

algorithms use the decomposition of the GSVD at time £ — 1 to
compute the decomposition at time k. The equation 2 at time k — 1
can be rewritten as:

Uir = Yior-Rup—1-X{ an
Ni—1 = Viei-Rye—1-Xi,

where Ry -1 € RV and Ry x—1 € RY*¥ are upper tri-
angular matrices having parallel rows and Xj_; € RV* is an
orthogonal matrix. For the computation, only Ry x—1, Ry k-1
and Xj_; are stored. When a new data vector uy, (speech-and-
noise) or ny, (noise) is present at time k, the GSVD of Uy, and Ny,
need to be recomputed as

Uk — |: As 'Uk—l :| or Nk _ |: >\n 'Nk—l :| (12)

ug ng

Iv-10



where \s; and A, are exponential weighting factors for speech and
noise matrix, respectively. For details on the updating scheme, the
reader is referred to [6].

e Step 4 : This step consists of computing the optimal filter wyy 7 1,
after the update of the recursive GSVD-updating algorithm. Sub-
stituting formulae (11) into (1), the equation can be rewritten as:

Wwrr = XeRpk.
(1 =20)-(REx)* = (1= A2)-(RN4)

di — —
s 7= No)-(Ri7 )7+ (= D.(1 = 22).(RE )2
Ro X

(13)

The factor p/q is replaced by (1—X2)/(1—A2). Only one column
(the i—th column, w%,VF’k of Wy r 1) is computed as the solution
of the linear set by a back-substitution method. In our experiments,
the speech distortion parameter y is set to 1.75.

4. METHODS

4.1. Hearing aids

The hearing aid was a prototype based on a Cochlear Nucleus
behind-the-ear headset housing. One hardware directional micro-
phone (Microtronic 6001), as front microphone, and one omni-
directional microphone (Knowles FG-3452), as rear microphone,
were mounted in an endfire array configuration. The hardware
directional microphone had a cardioid spatial characteristic (null
at 180°) in anechoic conditions. The distance between the front
entry port and the back entry port of the hardware directional mi-
crophone was lcm. The distance between the front entry port of
the hardware directional microphone and the omnidirectional mi-
crophone was 2.5cm.

4.2. Physical evaluation

In general, several signals are available to the VAD, such as the
signal of the omnidirectional microphones, the directional micro-
phone or even the output of the noise reduction technique. In this
study, the behaviour of the VAD is evaluated when the VAD is
connected to these different signals. When the VAD algorithm
is connected to the omnidirectional microphone or the directional
microphone, the signals are directly available. When the VAD is
connected to the output of the strategy, the signals are only avail-
able after a first update of the adaptive filters. The SVD-based
technique needs at least a noise period and a speech-and-noise pe-
riod. To solve this problem of initialization, the VAD is connected
first to the directional microphone and when several samples are
classified as speech-and-noise periods or noise periods, the opti-
mal filters are updated. Only then, the VAD algorithm is connected
to the output of the SVD-based strategy. The performance of the
VAD is evaluated by calculating the percentage correctly detected
samples by the VAD algorithm for speech-and-noise periods and
noise periods of the signals. The percentage (Per) is calculated as:

SNRealTime x 100
SNPe7'fect

_ NRﬁalT'me x 100

Per =
NPerfect

Per (14)

where Npeyfect and SNperfect are the number of samples, which
are known to be classified as noise periods (IN) or speech-and-

noise periods (S N) by the ‘perfect’ VAD. Ngreaitime and SNgealtime

b

are the number of samples which are correctly classified as noise
periods or speech-and-noise periods by the real time VAD. The
signals of the speech signals (0°) and the noise signal (90°) are
recorded when the hearing aid is positioned on a dummy head.
The signals are recorded during 90 seconds. In the calculation, the
first 20 seconds of the signals are not taken in account. This is the
time needed to the noise reduction algorithm to converge.

4.3. Perceptual evaluation

The perceptual evaluation was performed with ten normal hearing
listeners by measuring the Speech Reception Threshold (SRT) of
sentences in a stationary speech weighted noise, with an adaptive
procedure [7]. The tests of the omnidirectional microphone and the
adaptive beamformer [2] were carried out in two different noise
scenarios in a moderately reverberant room (7590 = 0.76s). A
first, where the speech source was at an angle of 0° (in front of the
mannequin) and the noise source at 90°, and a second, where the
speech source was at 45° and three independent noise sources were
at 90°/180°/270°. The distance between the loudspeakers and the
center of the mannequin was 1 meter. The SVD-based technique
was compared to an adaptive beamformer technique, which was
known to give significant improvements in speech intelligibility

[2].

5. RESULTS

5.1. Physical evaluation

Figure 3 shows the results of the percentage (Per) correctly de-
tected samples by the VAD algorithm for speech-and-noise peri-
ods and noise periods in a stationary speech weighted noise. The
VAD algorithm detected correctly the noise-only periods when
it was connected to the omnidirectional microphone, the direc-
tional microphone or the output of the noise reduction strategy
(Per > 90). The detection performance for the speech-and-noise
periods was clearly a function of the signal to which the VAD was
connected. The performance of the VAD dropped significantly
when it was linked to the omnidirectional or directional micro-
phone for a SNR below 5dB. When the VAD used the output sig-
nal of the SVD-based technique, the percentage of well-detected
samples stayed above 90% for a SNR above -5dB. At a SNR of
-10dB, the scores were about 90% with the optimal filtering tech-
nique. Connecting the VAD to the output of the noise reduction
algorithm revealed the best performance. In this study, the VAD
was connected to the output of the noise reduction strategy for the
real time implementation.

5.2. Perceptual evaluation

Figure 4 shows the SRT-improvements (in dB) of the two noise
reduction algorithms (SVD-based optimal filtering technique ver-
sus adaptive beamformer [2]) relative to the omnidirectional mi-
crophone, for both jammer sound scenarios. To compare the per-
formance of the noise reduction techniques between each other,
a statistical analysis (a paired comparison) was performed for the
two noise scenarios. In the single jammer sound scenario, impor-
tant SRT-improvements were obtained, 15.8dB and 15.1dB, for
the adaptive beamformer and the optimal filtering technique re-
spectively. There were no significant differences between both
strategies (p=0.103). This means that the SVD-based technique
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Fig. 3. Performance of the VAD when it is connected to the omni-
directional microphone, the directional microphone, the output of
the SVD-based technique.
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Fig. 4. SRT-improvements (in dB) of the SVD-based optimal fil-
tering technique (SVD) and the adaptive beamformer (Beam) rel-
ative to the omnidirectional microphone for both jammer sound
scenarios

can perform as well as the adaptive beamformer when the noise
scenario is optimal for the latter technique. Indeed, the desired
target (speech at 0°) was in the look direction of the beamformer
(angle 0°). In the multiple noise scenario, the SVD-based tech-
nique was significantly better than the adaptive beamformer when
a stationary speech weighted noise was present (p=0.005). SRT-
improvements of 7.5dB and 9.0dB were obtained with the adap-
tive beamformer and the optimal filtering technique, respectively.
The difference between the two strategies (1.5dB) is important for
hearing-aid users. In critical listening conditions (close to 50% of
speech understood by the listener) an improvement of 1dB in SNR
corresponds to an increase of speech understanding of about 15
per cent in every day speech communication [3].

On one hand, the SVD-based optimal filtering technique works
without assumptions about the desired target direction, however,
this strategy needs a robust VAD. On the other hand, the adap-
tive beamformer works with assumptions about the desired target
direction and the characteristics of the microphones. When these
assumptions are violated, it leads to a leakage of the speech signal
into the noise reference. If then the VAD misclassifies the speech-
and-noise periods, the adaptive filter takes in account the statistics
of the desired signal and subsequent target cancellation.

In the multiple jammer sound scenario, the noise reduction strate-
gies did not achieve the same performance as the single jammer
sound scenario. The SRT-improvements decreased by about 8dB.
Theoretically, a signal processing strategy comprising N micro-

phones can potentially separate up to N statistically independent
sources. More specifically, a configuration with two microphones
is optimal for the cancellation of one jammer sound. The direc-
tional microphone is important in adverse listening conditions. In
a diffuse listening environment (the jammer sources are not located
in well defined directions), the adaptive effect of the noise reduc-
tion strategies falls back to the effect of the directional microphone
[2].

SVD-based procedures are known to have a high computational
complexity, but, recent studies showed that the complexity prob-
lem can be controlled, making this approach attractive for practical
systems. Recently, a LMS approach was found to have approx-
imately the same cost of calculation as the adaptive beamformer

[8].

6. CONCLUSIONS

A real time implementation and an evaluation of a Singular Value
Decomposition (SVD) based optimal filtering technique for noise
reduction in a dual microphone BTE hearing aid is presented. Con-
necting the VAD to the output of the noise reduction algorithm re-
veals a good performance for discriminating the speech-and-noise
periods from the noise periods. Perceptual measurements showed
that the optimal filtering technique is more robust than the adap-
tive beamformer in a multiple noise source scenarios and could
perform as well as the latter technique in a single jammer sound
scene.
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