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ABSTRACT 

This paper reviews the development of perceptually-motivated 
models for quality assessment of speech transmission/storage 
systems.  The aim is to predict subjective mean opinion score 
(MOS) for non-linear, time-variant distortions such as lossy 
coders, channel errors or noise reduction, particularly for 
telecommunications applications. 

Because linear methods have proven unsuitable for this purpose, 
many researchers studied perceptual quality assessment, using a 
comparison of auditory transforms to estimate quality.  This 
work has led to several ITU standards.  Non-intrusive models, 
arguably more suited to network monitoring, are the focus of 
much current interest.  Intrusive, signal-based non-intrusive, and 
parametric non-intrusive models are discussed. 

1. INTRODUCTION 

Telecommunications networks have become increasingly 
complex and non-linear since the early 1990s, as low-bit rate 
speech coders and links that may be subject to transmission 
errors have become widespread, in particular for long-distance, 
mobile and voice over IP (VoIP) connections.  This paper 
describes the development of methods that can be used to 
measure the quality of these networks, as perceived by the end-
user.  Such methods can be used in turn to optimise the networks 
for quality, capacity or cost, and in network management to 
monitor the quality in terms of customer experience. 

As well as distorting the signal by low bit-rate perceptual speech 
coding, telephone networks may include error processes such as 
bit errors or packet loss, error concealment, discontinuous 
transmission with comfort noise insertion during silent periods, 
and noise reduction.  These can seriously affect the quality – in a 
way that cannot be accurately modelled by simple objective 
measures such as root mean squared error (RMSE), noise level, 
or frequency response. 

For example, if white noise is added to speech or music at a 
signal-to-noise ratio (SNR) of 13dB, it is clearly audible and 
disturbing.  However, if the noise is shaped in time and 
frequency to be below the masked threshold [1], it may be almost 
impossible for a human to detect any disturbance, even in 
stringent listening conditions.  Yet in these two cases, the noise 
level, SNR, RMSE and linear frequency response of the system 
under test are identical. 

Because objective metrics such as these correlate badly with 

users’ perceptions of quality, subjective testing became the key 
measure of quality of these systems.  In a typical listening test, 
subjects hear recordings processed through about 50 network 
conditions, and vote on a simple opinion scale such as the 
common 5-point listening quality (LQ) scale [2].  The average 
score for a condition, across all subjects, is termed mean opinion 
score (MOS).  These methods are described further in section 2. 

Subjective tests are, however, slow and expensive to conduct, 
making them accessible only to a small number of laboratories 
and unsuitable for real-time monitoring.  Computational models 
that accurately predict MOS would be more suitable for field 
applications, motivating the research described below.  Section 2 
also describes methods used to evaluate model performance. 

Section 3 of this paper provides an introduction to intrusive 
models, which use both the input and output of the system for 
quality assessment and generally require an active measurement.  
Section 4 describes parametric non-intrusive models that use 
measurements or estimates of network properties to predict the 
quality.  Section 5 describes signal-based non-intrusive models, 
which require only the processed signal and can be applied to 
monitor general, live traffic. 

2. SUBJECTIVE TESTS 

A very wide range of audible distortions can be caused by the 
systems and processes introduced above.  Subjective testing 
methods have been developed to provide an overall score of the 
quality of a system or service from the customer’s viewpoint, 
independent of the underlying technology used in the network. 

2.1 Listening quality 

In listening tests, subjects hear a number of distorted recordings, 
and vote on their opinion of the quality.  The absolute category 
rating (ACR) LQ method has been the most commonly used 
subjective test procedure in telecommunications [2].  This is a 5-
point discrete scale, using the labels excellent, good, fair, poor, 
and bad, assigned integer values from 5 to 1.  Early perceptual 
model research considered other opinion scales, in particular the 
diagnostic acceptability measure (DAM) [3].  Other methods 
used in audio quality tests are described in ITU-R BS.1116 [4]. 

Careful test design can control some undesirable factors that 
influence the voting process, such as dependence on presentation 
order.  One important variable that is only partially controlled in 
the ACR LQ method is the subjective scale itself: depending on 
the range of conditions, and the subjects’ cultural interpretation 
of terms such as excellent, there can be systematic offsets as 
large as 1.0 MOS between tests or from different countries. 
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Methods that use anchors, such as comparison category rating 
(CCR) where pairs of signals are presented, one of which is 
usually a clean reference, can be used to fix the point of zero 
audible distortion [2].  These methods are less commonly used 
than ACR LQ, partly because they take longer to conduct, and 
perhaps also because only one point is anchored – the way that 
scores are allocated across the scale is still influenced by 
subjective and cultural interpretations and by the distribution of 
quality of the conditions in the test. 

2.2 Conversation quality 

Because they do not include any interaction between users, 
listening tests cannot model some important effects that emerge 
only in two-way communication.  In conversational tests, pairs of 
subjects talk over a test connection before voting on its quality, 
often using the standard 5-point quality scale (excellent…bad).  
This can take account of the whole link, including network, 
handsets and sidetone, echo, level and delay impairment [2][5].  
As they are generally more expensive, and can investigate fewer 
conditions than listening tests, conversational tests are relatively 
rare.  Parametric models such as the E-model, which is described 
in section 4, are sometimes used in their place. 

2.3 Performance assessment of models 

If perceptual models are to be used in place of subjective tests, 
their accuracy must be evaluated by comparison to subjective test 
data.  However, this is potentially difficult because subjective 
tests themselves use small sample sizes (typically 24 subjects), 
sometimes only partially control variables such as material 
dependence, and exhibit variations in the voting scale between 
tests as described above.  Because of this, relatively simple 
correlation-based methods have become the main figure of merit 
in recent work in the ITU [6][7]. 

The preferred method evaluates model performance separately 
for each subjective test.  Offset and non-linearity in the 
relationship is eliminated by applying a monotonic function 
(typically fitted for minimum RMSE) to map the objective scores 
onto the subjective scale.  Performance is measured using the 
Pearson correlation coefficient.  The residual error distribution, 
computed after the mapping function, may also be evaluated.  
Normally these measures are calculated per condition, as this 
reduces the influence of talker and material dependence [6]. 

Much initial work used the logistic function for this monotonic 
mapping [8][9].  The logistic can become very flat – artificially 
improving the performance of models with poor prediction 
power at the extremes – but can only take on a small range of 
curvature modes which may not match those in subjective tests.  
Because of these limitations, the monotonic function used in 
most recent standards work is the monotonic cubic polynomial, 
which has the same number of degrees of freedom (4) as the 
logistic.  A monotonic function is necessary because order must 
be preserved; this is usually achieved by fitting the polynomial 
using a gradient descent method with a cost constraint. 

The range of conditions that may be encountered in 
telecommunications networks is enormous (see for example [6]).  
Perceptual models often include tens or hundreds of internal 
coefficients, making over-training a strong possibility.  It is 
therefore of vital importance to use a large number of subjective 

tests to evaluate model performance.  The selection of ITU-T 
P.862 [6] used 22 subjective tests known to the authors, and 8 
unknown tests run by independent laboratories, containing about 
1300 conditions in total. 

It may seem like an obvious point, but researchers and end-users 
should be highly sceptical of the accuracy of models where few 
subjective test results are reported and especially where there is 
no independent validation. 

3. INTRUSIVE MODELS 

Intrusive test methods pass a known (reference) signal through 
the system under test, capture the processed (degraded) signal, 
and compare the two to derive a quality score that should 
correlate well with MOS. 

3.1 Masked-error models 

One of the first applications of perceptual models for quality 
assessment was proposed by Schroeder et al, who used a simple 
masking method to estimate the audibility of coding noise in a 
speech coder [10].  This was extended by Brandenburg to give a 
measure of the mean noise to masking ratio (NMR) [11].  These 
methods basically assume that any (time-domain) difference 
between the original and processed signals is noise, leading to 
poor performance when this does not hold, for example in 
filtering, phase jitter, or re-synthesis. 

3.2 Models based on comparison of auditory transforms 

Karjalainen introduced a more general technique for estimating 
error audibility based on auditory spectrum distance (ASD), a 
comparison of audible time-frequency-loudness representations 
[12].  This approach can be adapted to simulate a much wider 
range of perceptual effects, and has been much more successful.  
Although a successful implementation was demonstrated by 
Karjalainen, many later authors did not cite this work. 

A wide range of models for extracting distortion parameters were 
described by Quackenbush, who developed models for predicting 
DAM-derived quality scores [3] using measures such as cepstral 
distance.  Although he did consider using a Bark spectrum, and 
mentioned the problem of spectral tilt that was later re-
interpreted as transfer function equalisation, Quackenbush did 
not strongly pursue the perceptual analogy.  Similar objective 
metrics were used in many models (see [8] for references), and as 
recently as 1998 in the measuring normalizing blocks model 
(MNB), which used a multi-scale method to compute a quality 
score from the difference between logarithmic spectrograms of 
the signals [8][9].  For intrusive applications, however, the 
perceptual approach has become dominant. 

Several new perceptual models for measuring the quality of 
speech and audio coders emerged in the early 1990s.  Wang et al. 
took an approach similar to that of Karjalainen, although without 
temporal masking, to compute loudness on a Sone scale in Bark 
bands, and evaluate the mean squared Bark spectral distance 
(BSD) [13].  This approach was generalised by Hollier, who 
noted that multiple distortion parameters must be computed for a 
more general prediction, to model not only the amount but also 
the distribution of errors [14]. 
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The perceptual method was also explored for quality assessment 
of audio coders and systems [15]–[19], leading in 1999 to an 
ITU-R standard model, perceptual evaluation of audio quality 
(PEAQ) [20].  Although audio quality is not the focus of this 
paper, some of these authors introduced concepts that were later 
used in the speech quality models described below. 

Beerends and Stemerdink’s perceptual audio quality measure 
(PAQM) introduced the asymmetry factor, weighting the 
difference in each time-frequency cell by the power ratio of the 
reference and degraded signals.  This amplifies loud additive 
distortions, emulating perceptual streaming [15].  This was 
adapted, including the removal of masking, into a method for 
speech coder evaluation known as the perceptual speech quality 
measure (PSQM) [21].  After a competition, PSQM was adopted 
as ITU-T P.861 in 1996 [8]. 

3.3 Models for network testing 

Most of the models described above were developed for testing 
speech or audio coders.  Real networks introduce level changes, 
unknown delay and/or linear filtering – all of which may vary 
dynamically.  If these are not taken into account, they may lead 
to large false errors being observed in intrusive models that use 
the method of comparison of auditory transforms, causing highly 
inaccurate quality scores.  From the mid-1990s the focus of 
intrusive model research shifted to solving these problems and 
using large databases of training data, to make models that 
remained accurate when used in the field. 

Linear filtering may occur in many places in audio or speech 
transmission systems, and is generally less disturbing than non-
linear coding distortions.  This was modelled by Thiede for audio 
quality assessment, by estimating the frequency response 
smoothed in time and frequency, and equalising the signals to 
eliminate the error due to steady-state differences [18][20].  A 
similar approach was mentioned for speech quality assessment 
by Berger [22], although few details were given.  Rix used a 
combination of phaseless cross-spectrum-based transfer function 
equalisation and spectral difference, for partial equalisation in a 
model based on that of Hollier, known as the perceptual analysis 
measurement system (PAMS) [23].  A similar, unpublished 
method was developed by Beerends and Hekstra in an 
improvement of PSQM known as PSQM99. 

Time-delay proved to be a significant challenge as VoIP became 
widespread in the late 1990s.  Variations in packet delay or 
dynamic jitter buffer re-sizing may lead to a change in the end-
to-end audio delay [23].  The comparison method requires the 
reference and degraded signals to be aligned, but few early 
models provided an algorithm for delay assessment, and none 
could deal with time-varying delay.  Rix and Reynolds 
introduced a set of methods in PAMS to identify delay changes 
between and during speech utterances, and used this to improve 
model accuracy for conditions including delay variation [23]. 

Because it lacked these processes, PSQM [8] was not suitable for 
network testing, and a competition was held to replace it.  This 
was jointly won by PSQM99 and PAMS, which were then 
integrated – using the time alignment of PAMS and the auditory 
transform of PSQM99 – to produce a new model known as 
perceptual evaluation of speech quality (PESQ) that was 

standardised as ITU-T P.862 [6] in 2001, and P.861 was 
withdrawn.  The average correlation of PESQ with MOS on both 
known and unknown subjective test data was found to be 0.935 
in the ITU-T evaluation [6].  A separate paper at this conference 
describes recent work by Goldstein, Rix, Beerends and Berger to 
extend PESQ for acoustic and binaural applications for testing 
both telephone networks and terminals such as handsets. 

4. PARAMETRIC MODELS 

Simple computational models have been proposed to estimate the 
quality of a network without the need to run subjective or 
intrusive tests, for network planning [5] or non-intrusive 
measurement [24].  Methods based on this parametric approach 
have been developed by two companies for non-intrusive, real-
time quality assessment of VoIP systems. 

4.1 The E-model 

Developed as a tool for network designers, the E-model has 
become a popular framework for estimating the quality of 
networks [5].  It produces a transmission rating R, which can be 
used to estimate conversation quality.  An additive relationship 
between component factors is assumed.  It must be stressed that 
while this makes the model simple and easy to understand, this 
assumption is known to be wrong in some cases.  Because of this 
and the limited validation of the E-model for modern network 
configurations, it is recommended for network planning only. 

4.2 Parametric conversation quality measures 

For trunk network links that are subject to minimal coding 
distortions or channel errors, the main factors that affect 
conversation quality are speech level, noise level, talker echo and 
delay.  These parameters may be measured using proprietary in-
service non-intrusive measurement devices (INMDs), typically at 
international switches, and can then be used in parametric 
models to estimate conversation quality.  The use of the E-model 
for this purpose, and an alternative model known as the call 
clarity index (CCI), are described in ITU-T P.562 [24]. 

4.3 Parametric models of VoIP quality 

Two competing parametric approaches to real-time assessment of 
VoIP quality have emerged in the last three years.  Both use 
parameters from the RTP voice packet stream to compute speech 
quality impairments, can estimate delay from the RTCP stream, if 
available, and may be integrated into the E-model framework.  
Clark proposed a method, based on the Gilbert-Eliot hidden 
Markov model for bursty packet loss, to calculate the coding/ 
error impairment factor Ie that is an input to the E-model [25]. 

Broom, Reynolds, Hollier and Barrett have argued that this does 
not take into account large differences between VoIP devices 
such as gateways and IP phones, for example in the 
implementation of the jitter buffer and error concealment.  They 
have proposed a method to calibrate, using PESQ, a proprietary 
multi-parameter model for a specific edge device to allow a more 
accurate quality estimate [26].  An ITU-T competition to select 
one of these methods for non-intrusive parametric evaluation of 
VoIP is currently in progress [27]. 
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5. SIGNAL-BASED NON-INTRUSIVE MODELS 

The parametric models described above can only be used with 
certain types of network, such as VoIP.  General non-intrusive 
(also known as no-reference or single-ended) methods require 
only the processed signal and can be used with live traffic.  
Unlike the parametric models, these process the audio stream to 
extract distortion indicators, which are used to estimate MOS. 

Work in this area was pioneered by Gray, who used a vocal tract 
model to identify distortions, for example through physio-
logically implausible shapes or transitions.  Gray also described a 
calibration procedure using PAMS [28].  Beerends and Hekstra 
considered a method based on distortion detection by integrating 
the perceptual model of PESQ into the non-intrusive model [29].  
An alternative approach using a single-ended auditory model for 
distortion identification using analysis of frequency modulation 
and articulation was proposed by Kim [30]. 

ITU-T SG12 has recently selected a non-intrusive model based 
on the work of Gray, Beerends and others, after a competition 
under the working title P.SEAM [7].  The winning candidate 
showed average correlation of 0.884 with 22 known subjective 
tests, and 0.814 with 6 unknown tests.  This exceeds the 
performance of PSQM, which has an average correlation of 0.81 
over a similar dataset of 22 tests, indicating that this non-
intrusive model compares favourably with the first generation of 
intrusive perceptual models. 
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