
LOSSLESS COMPRESSION OF ONE-BIT AUDIO

Erwin Janssen1, Eric Knapen2, Derk Reefman1, Fons Bruekers1

1Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
2Philips Digital Systems Laboratories, Glaslaan 2, 5616 LW Eindhoven, The Netherlands

ABSTRACT

In this paper, the coding technique that is used by the Super

Audio CD system to losslessly compress 64 times oversampled

one-bit audio data is introduced. The individual steps in the

encoding and decoding process are detailed. The performance of

the lossless compression algorithm, as function of various genres

of music, is discussed. It is shown that 74 minutes of both stereo

and multi-channel music, which translates to 12.5GB of raw

data, fit on the 4.7GB Super Audio disc after compression. An

extension to the algorithm for future professional use of higher

sampling rates is made. The lossless compression performance is

demonstrated with wide-band 256 Fs recordings, and 128 and 64

Fs down converted versions of these, demonstrating the

scalability of the algorithm.

1. INTRODUCTION

With the advent of high-capacity storage media in the early

nineties, the interest for high-resolution audio home delivery has

significantly increased. This trend has been recognized by the

music industry, and has seeded the conception of Super Audio

CD, an audio delivery format that combines the desired ultra

high audio quality with the desire to reproduce both stereo and

multi-channel audio recordings. While a one-bit digital storage

format has been found to comply with the most demanding

consumer requirements with respect to audio quality, a separate

stereo and six-channel (often referred to as multi-channel, MC)

area has been found necessary to deliver the optimum sound

quality both in multi-channel as well as in stereo. While the

physical storage capacity of the disc is 4.7·10 9 bytes, this still

proves to be insufficient to store the necessary data for a 74-

minute recording. The one-bit coding employed [1] (called

“DSD”, Direct Stream Digital), displays a data rate of 64 times

44.1 kS/s (“64 Fs”), roughly equaling 2.8 MS/s. For both a

stereo and MC area, this translates to 12.53 Gbyte that needs to

be stored. This clearly calls for a lossless compression technique,

to store the data on the physical disc.

Lossless compression techniques for audio have been

around for quite a while, and have all focused on the

compression of PCM as this has been the digital format

employed on the CD [2], [3], [4]. Because the compression is

lossless, the bit-rate will vary over time, leading to playing time

uncertainty. So-called “lossy” compression techniques, such as

AC3 and MP3, guarantee a fixed data rate, and thus a predictable

playing time. The price to pay for this feature is a time variable

audio quality, which is in contradiction with the goal of Super

Audio CD. Therefore Super Audio CD employs a lossless coding

technique for its one-bit data, which has been coined “DST”

(Direct Stream Transfer) [5].

The encoding and decoding process will be discussed in

Section 2. Section 3 will show the performance of the algorithm.

Finally, in Section 4, a summary is presented.

2. ENCODING AND DECODING

For a good understanding of the lossless encoding and decoding

scheme, it is useful to distinguish the three stages [6], [7] of

framing, prediction, and entropy coding, which will be discussed

separately. To complete the discussion on the encoding process,

the final stage of multiplexing is briefly investigated.

2.1. Framing

The framing process divides the original one-bit audio stream

consisting of samples b ∈ {0, 1} into frames of length 37,632

bits, corresponding to 1/75 of a second, assuming a sampling

rate of 2.8MS/s. The purpose of framing is two-fold. Firstly,

framing is necessary to provide easy, “random” access to the

audio data during playback. For the same reason, each frame

needs to be independently encoded, which enables the player to

decode separate frames without knowledge about preceding

frames. Secondly, framing allows the audio contents in a frame

to be regarded as stationary (or at least, quasi-stationary). This is

the underlying assumption in the prediction process. The framing

rate is chosen such that the assumption of quasi-stationary audio

is reasonable, while it still does not result in excessive overhead.

����������	
�����
�
���
���

����
���								��

���									�

� �

�����������
�����	�������

� �

����������	
�����
���

�������

�����������
�����	������

���� !����
�������

�

�

"

�	���#����

�

���

Figure 1 Schematic overview of the encoder.

2.2. Prediction

Prediction filtering is the first necessary step in the process of

(audio) data compression. The prediction filtering step, shown in

more detail in Figure 1, attempts to remove redundancy from the

III - 10200-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡

audio bit stream b, by creating a new bit stream e, which is not

redundant. Together with the prediction filter coefficients h,

error stream e carries the same information as b. The prediction

filter is denoted as z -1H(z), to emphasize the fact that the filter

transfer contains a delay, which is mandatory to create an

encoder that can be time-reversed (thus creating the decoder).

The FIR prediction filter can be designed according to standard

methods, the most well-known based on Minimum Mean

Squared Error (MMSE, [3]).

 Application of the MMSE criterion leads to the prediction

error equality that needs to be minimized :

∑ ∑∑
= ==

⎟
⎠
⎞⎜

⎝
⎛ −−⋅=ε

�

��

�
�

��

�

��

�]n[b]in[b]i[h]n[(1)

where M is the number of bits per frame, and L the number of

prediction coefficients. After straightforward manipulation [8],

[3] this results in the coefficients h. In general, the FIR filter

found in this way will be a minimum phase filter. To obtain the

optimum balance between prediction accuracy and the number of

bits taken by the prediction filter description, the prediction filter

coefficients are quantized to 9-bit fixed-point numbers.

Referring back to Figure 1, it is clear that the prediction signal z

is multi-bit. The prediction bits q are derived from the multi-bit

values z by simple truncation, indicated by the block labeled

Q(z). It should be noted that the error between bit-stream b and

multi-bit signal z is minimized, whereas ideally the difference

between b and the q, the one-bit quantized version of z, would

be minimized (see Figure 1). This however results in intractable

mathematics.

 Finally, the error signal e is calculated by an exclusive-or

(XOR) operation between b and q. The purpose of the prediction

filter is to create as many zeroes in e as possible, as this will

enable significant data reductions by entropy encoding (see

Section 2.3).

 As becomes clear from the decoder diagram (Figure 2), the

computationally demanding design of the prediction filter is only

required in the encoder. The player only has to perform the,

much less demanding, decoding process, where the most

expensive operation is the FIR filtering process. Since the

filtering needs to be performed on a one-bit signal, the

implementation is straightforward and does not pose any

problems.

 To enable complete reconstruction of the original bit stream

on the decoder side, the prediction filter coefficients and the

error bits have to be transferred for each frame. The decoder

calculates the original bit stream from the error bits and the

predictions (which are calculated exactly in the same way as in

the encoder):

⎩
⎨
⎧

≠
=

=
][][,1

][][,0
][

nqneif

nqneif
nb (2)

 So far, no attention has been paid to the maximum number of

prediction filter coefficients. While, at least theoretically, the

prediction results turn out to be better for increased filter length,

the overhead of the extra coefficients that need to be stored on

the disc increases. This is indicated in Figure 3, where the

compression ratio is plotted as a function of the prediction filter

length, with and without taking the overhead of the prediction

filter coefficients into account. We see that around a filter length

of 130, the optimum compression ratio is achieved. While these

graphs will vary over, e.g., the different genres of music, it turns

out that a maximum filter length of 128 typically results in close-

to-optimal performance. Although for a classic prediction filter,

a length of 128 seems long, it should be realized, however, that

the input signal is a one-bit signal, and that the filtering

operation therefore is not demanding at all.

���������	

�����
�������
��

�
������	

���	
�������������

�������������

�

��������
�

������������

�

���
 !�
��
�������

�

�

"

�

���

Figure 2 Decoder overview. The decoder needs to receive the

prediction filter coefficients h, encrypted data-stream d, and

probability table information.

 It is also interesting to note that the compression ratio seems

to increase in a step-wise manner with the increase of the

prediction filter length. This feature occurs for one-bit audio

with virtually all genres of audio, and some times results in the

fact that a plateau in compression ratio is achieved for a filter

length less than 128, after which no further improvement in

compression ratio is observed. In these cases, the prediction

filter length is chosen to be less than 128. In most practical

applications, the optimal filter length has been found to vary

between 40 and 128.

Figure 3 Compression ratio, with (dashes) and without (solid

line) overhead taken into account, as a function of the filter

length. For higher orders, the filter coefficient overhead

generally grows faster than the gain in coding efficiency.

2.3. Entropy coding

When proper prediction filters are used, the signal e will consist

of more zeroes than ones and can thus result in a possible

compression gain. Suppose that the probability of a ‘1’ in e is

denoted by p, then the probability of a ‘0’ equals (1-p). The

III - 1021

➡ ➡

minimum number of bits N bits with which, on average, a single

bit of the stream e can be represented then equals:

))p1(log)p1()p(logp(N
������

−⋅−+⋅−= (3)

Suppose 90% of all predictions are correct, then p = 0.1 and

Nbits = 0.47. A compression of about a factor 2 is possible. While

this calculation based on entropy calculations presents an upper

limit to the achievable compression, an algorithm that under

practical circumstances approaches this limit is the arithmetic

coding algorithm [9], [10].

Arithmetic encoding methods can only be used

successfully when accurate information on the probabilities of

the symbols “0” or “1” is available. In Figure 4, a histogram

(measured over 188,160 samples taken from a 6-channel pop-

recording) of the occurrence of the different values of |z| is given,

indicated by diamonds. Also shown in squares, is the histogram

for the occurrence of |z|, given the fact that the prediction of the

sign of z is correct, i.e., e=0. In triangles, the histogram is shown

for the occurrence of |z|, given the fact that the prediction is

wrong (e=1). These plots show that there is a very strong

relationship between the value of z and the reliability of the

prediction, which can be exploited in the arithmetic encoding.

The symbol probabilities needed for arithmetic coding

are calculated by making a histogram (or table) as shown in

Figure 4. Denoting the probability that a prediction is correct by

P(e=0), we see that since P(e=0) = 1 - P(e=1), it is not necessary

to calculate two tables: only the error probability table t, for

P(e=1), is used for arithmetic encoding and transferred to the

decoder.

0

5000

10000

15000

20000

25000

30000

35000

40000

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1
|z|

<|z|>

(e = 0)

(e = 1)

Figure 4 Distribution of |z| (diamonds) and the corresponding

histograms for the number of right predictions (e=0, squares)

and wrong predictions (e=1, triangles).

2.4. Channel multiplexing

In the previous sections the “source model” [9], consisting of the

prediction filter and probability table, has been discussed for one

channel. In a full encoder, every channel has its own source

model, whereas only a single arithmetic encoder is used. To

exploit the correlation between channels, however, it is also

possible to let channels share prediction filters and/or probability

tables. Sharing filters or probability tables is profitable when the

decrease in number of metadata bits, necessary to transfer the

filter or table information from the encoder to the decoder, is

higher than the increase in number of arithmetic code bits. The

latter number will typically be somewhat larger, since it is not

always possible to construct a prediction filter (or probability

table) that leads to optimal arithmetic encoding for all channels

that are using it.

����

����

����

����

����

� ��� ��� ���
FR A M E N U M B ER

Figure 5 Compression ratio for 1000 frames of recording A

(classical music, 6 channels).

3. RESULTS

To illustrate the performance of the algorithm, a few typical

music excerpts have been selected from commercially available

recordings, labeled A, B, C, and D. A and B represent a typical

classical piece of music, excerpt C is a piece of jazz, and D

represents a typical pop music recording. In Figure 5, for excerpt

A, the compression ratio η is depicted over a length of 1000

frames. It can clearly be seen that the compression ratio varies

significantly over time. Musical events, such as a sudden intense

percussion, have a significant impact on the compression ratio.

Typically, during periods of silence, the compression ratio

increases, whereas during extremely loud passages the

compression ratio drops.

Table 1 shows the average compression ratios as obtained on

the full music titles, from which the excerpts have been taken.

All the tabulated discs comprise a stereo as well as a 6-channel

Title Description #ch � Achievable

playing time

6 2.795
A

Classical

music 2 2.777 } 1h 17min

26s

6 2.826
B

Classical

music 2 2.820 } 1h 18min

23s

6 2.728
C Jazz music 2 2.696 } 1h 15min

29s

6 2.688
D Pop music 2 2.636 } 1h 14min

14s

Table 1 Average compression ratio for recordings A – D.

III - 1022

➡ ➡

program. The maximum possible playing time for a disc

containing the stereo and multi-channel programs (equal length)

has been calculated and tabulated in Table 1. It has been

assumed that the average compression ratio stays constant and

that the data has to fit on one layer of a Super Audio CD with a

capacity of 4.7·109 bytes.

An interesting observation is that, typically, the MC

part compresses slightly better than the stereo part. In most

circumstances this is due to the fact that especially the rear

channels of the MC recording are quieter than the stereo

channels. As remarked earlier, the compression ratio increases

slightly for quieter recordings, explaining the higher

compression ratio for the MC part.

 The lossless compression algorithm, although initially

developed for a 64 Fs sampling rate, can be easily extended to

higher sampling rates for professional use, e.g., 128 Fs and 256

Fs. In order to achieve the best compression gain for these higher

rates, the frame length duration is kept constant at 1/75 of a

second, resulting in frame sizes of double or quadruple the size

used at 64 Fs. Other parameters, e.g. the maximum prediction

order or probability table length, stay unchanged.

 Table 2 lists for three example wideband recordings the

coding gain. The recordings have been performed at 256 Fs,

from which downsampled versions at 64 and 128 Fs have been

constructed. Fragment E is a typical classical recording in stereo.

Fragment F consists out of 6 channel pop music. Fragment G

contains a solo intermezzo of a violoncello, recorded using 5

microphones. From the table it becomes immediately clear that

the type of music has strong influence on compression gain.

Higher sampling rates result in higher compression gains.

However, a clear relationship between the increase in

compression gain for increasing sampling frequency is absent.

Recording at a higher sampling rate increases the amount of

information, which, as expected, in spite of the increase in

compression gain, increases the amount of required storage.

�Title Description #ch
64 Fs 128 Fs 256 Fs

E Classical

music

2 2.66 3.03 4.24

F Pop music 6 2.76 3.05 3.59

G Classical

music (solo)

5 2.98 3.20 3.51

Table 2 Compression gain for three 64, 128, and 256 Fs

recordings.

4. SUMMARY

We have demonstrated the feasibility of lossless compression for

one-bit coded signals. The compression algorithm is based on a

combination of linear prediction and arithmetic encoding.

Although the encoding algorithm is computationally rather

demanding, the decoding algorithm is much less so, and can

easily be implemented using standard ASIC technology. As a

result of the lossless nature of the compression, the compression

ratio varies, and is dependent on the program material. Quieter

material will result in a slightly improved compression, and

hence a longer maximum playing time. On average, it is possible

to achieve a playing time of 74 minutes for a disc containing

both a stereo and multi-channel recording.

 An extension to the algorithm, to efficiently deal with higher

sampling rates, has been made. It has been shown, that with a

minimal change to the algorithm, also higher sampling rates,

e.g., 128 Fs and 256 Fs, show excellent compression ratios. This

extension enables the use of higher sampling rates for future

professional use. As a result, one-bit coding technology

combines audiophile audio quality with a realistic data-rate

requirement, offering the best of high-resolution audio, for both

consumer and professional use.

5. ACKNOWLEDGEMENTS

The authors wish to thank all their Philips colleagues who did

pioneering work in the field of one-bit lossless compression.

6. REFERENCES

[1] Derk Reefman and Erwin Janssen, “One-bit audio: an

overview”, JAES, vol. 52, no. 2, February 2004.

[2] Claude Cellier and Pierre Chênes, “Lossless audio

data compression for real-time applications”, AES

preprint 3780, presented at the 95th AES Convention,

New York, U.S.A. (1993 October 7-10).

[3] N.S. Jayant and P.I. Noll, “Digital Coding of

Waveforms: Principles and Applications to Speech

and Video”, Englewood Cliffs, NJ: Prentice Hall

1984.

[4] R. F. Rice, “Some practical universal noiseless

coding techniques”, Tech. Rep. 79-22, Jet Propulsion

Laboratory, Pasadena, CA, Mar. 1979.

[5] Eric Knapen, Derk Reefman, Erwin Janssen, and

Fons Bruekers, “Lossless compression of one-bit

audio”, JAES, vol. 52, no. 2, February 2004.

[6] Fons Bruekers, Werner Oomen, René van der

Vleuten and Leon van de Kerkhof, “Lossless coding

of 1-bit audio signals” presented at the AES 8th

Japanese Regional Convention, Tokyo, Japan (1997

June 25-27).

[7] Fons Bruekers, Werner Oomen, René van der

Vleuten and Leon van de Kerkhof, “Improved

lossless coding of 1-bit audio signals”, presented at

the 103rd AES Convention, New York, U.S.A. (1997

September 26-29).

[8] William H. Press et al., “Numerical recipes in C: the

art of scientific computing”, Second edition,

Cambridge University Press, Cambridge, England,

1992.

[9] I.H. Witten, R.M. Neal and J.G. Cleary, “Arithmetic

coding for data compression”, Communications

ACM, vol. 30, pp. 520-540, June 1987.

[10] P.G. Howard and J.S. Vitter, “ Arithmetic coding for

data compression”, Proc. IEEE, vol. 82, no. 6, pp.

857-865, June 1994.

III - 1023

➡ ➠

