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ABSTRACT 
 

In this paper, the coding technique that is used by the Super 

Audio CD system to losslessly compress 64 times oversampled 

one-bit audio data is introduced. The individual steps in the 

encoding and decoding process are detailed. The performance of 

the lossless compression algorithm, as function of various genres 

of music, is discussed. It is shown that 74 minutes of both stereo 

and multi-channel music, which translates to 12.5GB of raw 

data, fit on the 4.7GB Super Audio disc after compression. An 

extension to the algorithm for future professional use of higher 

sampling rates is made. The lossless compression performance is 

demonstrated with wide-band 256 Fs recordings, and 128 and 64 

Fs down converted versions of these, demonstrating the 

scalability of the algorithm. 

 

1. INTRODUCTION 

With the advent of high-capacity storage media in the early 

nineties, the interest for high-resolution audio home delivery has 

significantly increased. This trend has been recognized by the 

music industry, and has seeded the conception of Super Audio 

CD, an audio delivery format that combines the desired ultra 

high audio quality with the desire to reproduce both stereo and 

multi-channel audio recordings. While a one-bit digital storage 

format has been found to comply with the most demanding 

consumer requirements with respect to audio quality, a separate 

stereo and six-channel (often referred to as multi-channel, MC) 

area has been found necessary to deliver the optimum sound 

quality both in multi-channel as well as in stereo. While the 

physical storage capacity of the disc is 4.7·10 9 bytes, this still 

proves to be insufficient to store the necessary data for a 74-

minute recording. The one-bit coding employed [1] (called 

“DSD”, Direct Stream Digital), displays a data rate of 64 times 

44.1 kS/s (“64 Fs”), roughly equaling 2.8 MS/s. For both a 

stereo and MC area, this translates to 12.53 Gbyte that needs to 

be stored. This clearly calls for a lossless compression technique, 

to store the data on the physical disc.  

Lossless compression techniques for audio have been 

around for quite a while, and have all focused on the 

compression of PCM as this has been the digital format 

employed on the CD [2], [3], [4]. Because the compression is 

lossless, the bit-rate will vary over time, leading to playing time 

uncertainty. So-called “lossy” compression techniques, such as 

AC3 and MP3, guarantee a fixed data rate, and thus a predictable 

playing time. The price to pay for this feature is a time variable 

audio quality, which is in contradiction with the goal of Super 

Audio CD. Therefore Super Audio CD employs a lossless coding 

technique for its one-bit data, which has been coined “DST” 

(Direct Stream Transfer) [5]. 

The encoding and decoding process will be discussed in 

Section 2. Section 3 will show the performance of the algorithm. 

Finally, in Section 4, a summary is presented. 

2. ENCODING AND DECODING 

For a good understanding of the lossless encoding and decoding 

scheme, it is useful to distinguish the three stages [6], [7] of 

framing, prediction, and entropy coding, which will be discussed 

separately. To complete the discussion on the encoding process, 

the final stage of multiplexing is briefly investigated. 

2.1. Framing 

The framing process divides the original one-bit audio stream 

consisting of samples b  ∈ {0, 1} into frames of length 37,632 

bits, corresponding to 1/75 of a second, assuming a sampling 

rate of 2.8MS/s. The purpose of framing is two-fold. Firstly, 

framing is necessary to provide easy, “random” access to the 

audio data during playback. For the same reason, each frame 

needs to be independently encoded, which enables the player to 

decode separate frames without knowledge about preceding 

frames. Secondly, framing allows the audio contents in a frame 

to be regarded as stationary (or at least, quasi-stationary). This is 

the underlying assumption in the prediction process. The framing 

rate is chosen such that the assumption of quasi-stationary audio 

is reasonable, while it still does not result in excessive overhead. 
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Figure 1 Schematic overview of the encoder. 

2.2. Prediction 

Prediction filtering is the first necessary step in the process of 

(audio) data compression. The prediction filtering step, shown in 

more detail in Figure 1, attempts to remove redundancy from the 
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audio bit stream b, by creating a new bit stream e, which is not 

redundant. Together with the prediction filter coefficients h, 

error stream e carries the same information as b. The prediction 

filter is denoted as z -1H(z), to emphasize the fact that the filter 

transfer contains a delay, which is mandatory to create an 

encoder that can be time-reversed (thus creating the decoder). 

The FIR prediction filter can be designed according to standard 

methods, the most well-known based on Minimum Mean 

Squared Error (MMSE, [3]).  

 Application of the MMSE criterion leads to the prediction 

error equality that needs to be minimized :
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where M is the number of bits per frame, and L the number of 

prediction coefficients. After straightforward manipulation [8], 

[3] this results in the coefficients h. In general, the FIR filter 

found in this way will be a minimum phase filter. To obtain the 

optimum balance between prediction accuracy and the number of 

bits taken by the prediction filter description, the prediction filter 

coefficients are quantized to 9-bit fixed-point numbers. 

Referring back to Figure 1, it is clear that the prediction signal z 

is multi-bit. The prediction bits q are derived from the multi-bit 

values z by simple truncation, indicated by the block labeled 

Q(z). It should be noted that the error between bit-stream b and 

multi-bit signal z is minimized, whereas ideally the difference 

between b and the q, the one-bit quantized version of z, would 

be minimized (see Figure 1). This however results in intractable 

mathematics. 

 Finally, the error signal e is calculated by an exclusive-or 

(XOR) operation between b and q. The purpose of the prediction 

filter is to create as many zeroes in e as possible, as this will 

enable significant data reductions by entropy encoding (see 

Section 2.3). 

 As becomes clear from the decoder diagram (Figure 2), the 

computationally demanding design of the prediction filter is only 

required in the encoder. The player only has to perform the, 

much less demanding, decoding process, where the most 

expensive operation is the FIR filtering process. Since the 

filtering needs to be performed on a one-bit signal, the 

implementation is straightforward and does not pose any 

problems. 

 To enable complete reconstruction of the original bit stream 

on the decoder side, the prediction filter coefficients and the 

error bits have to be transferred for each frame. The decoder 

calculates the original bit stream from the error bits and the 

predictions (which are calculated exactly in the same way as in 

the encoder): 
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 So far, no attention has been paid to the maximum number of 

prediction filter coefficients. While, at least theoretically, the 

prediction results turn out to be better for increased filter length, 

the overhead of the extra coefficients that need to be stored on 

the disc increases. This is indicated in Figure 3, where the 

compression ratio is plotted as a function of the prediction filter 

length, with and without taking the overhead of the prediction 

filter coefficients into account. We see that around a filter length 

of 130, the optimum compression ratio is achieved. While these 

graphs will vary over, e.g., the different genres of music, it turns 

out that a maximum filter length of 128 typically results in close-

to-optimal performance. Although for a classic prediction filter, 

a length of 128 seems long, it should be realized, however, that 

the input signal is a one-bit signal, and that the filtering 

operation therefore is not demanding at all. 
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Figure 2 Decoder overview. The decoder needs to receive the 

prediction filter coefficients h, encrypted data-stream d, and 

probability table information. 

 It is also interesting to note that the compression ratio seems 

to increase in a step-wise manner with the increase of the 

prediction filter length. This feature occurs for one-bit audio 

with virtually all genres of audio, and some times results in the 

fact that a plateau in compression ratio is achieved for a filter 

length less than 128, after which no further improvement in 

compression ratio is observed. In these cases, the prediction 

filter length is chosen to be less than 128. In most practical 

applications, the optimal filter length has been found to vary 

between 40 and 128. 

Figure 3 Compression ratio, with  (dashes) and without (solid 

line) overhead taken into account, as a function of the filter 

length. For higher orders, the filter coefficient overhead 

generally grows faster than the gain in coding efficiency. 

 

2.3. Entropy coding 

When proper prediction filters are used, the signal e will consist 

of more zeroes than ones and can thus result in a possible 

compression gain. Suppose that the probability of a ‘1’ in e is 

denoted by p, then the probability of a ‘0’ equals (1-p). The 
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minimum number of bits N bits with which, on average, a single 

bit of the stream e can be represented then equals: 

))p1(log)p1()p(logp(N
������

−⋅−+⋅−= (3) 

Suppose 90% of  all predictions are correct, then p = 0.1 and 

Nbits = 0.47. A compression of about a factor 2 is possible. While 

this calculation based on entropy calculations presents an upper 

limit to the achievable compression, an algorithm that under 

practical circumstances approaches this limit is the arithmetic 

coding algorithm [9], [10]. 

Arithmetic encoding methods can only be used 

successfully when accurate information on the probabilities of 

the symbols “0” or “1” is available. In Figure 4, a histogram 

(measured over 188,160 samples taken from a 6-channel pop-

recording) of the occurrence of the different values of |z| is given, 

indicated by diamonds. Also shown in squares, is the histogram 

for the occurrence of |z|, given the fact that the prediction of the 

sign of z is correct, i.e., e=0. In triangles, the histogram is shown 

for the occurrence of |z|, given the fact that the prediction is 

wrong (e=1). These plots show that there is a very strong 

relationship between the value of z and the reliability of the 

prediction, which can be exploited in the arithmetic encoding. 

The symbol probabilities needed for arithmetic coding 

are calculated by making a histogram (or table) as shown in 

Figure 4. Denoting the probability that a prediction is correct by 

P(e=0), we see that since P(e=0) = 1 - P(e=1), it is not necessary 

to calculate two tables: only the error probability table t, for 

P(e=1), is used for arithmetic encoding and transferred to the 

decoder. 
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Figure 4 Distribution of |z| (diamonds) and the corresponding 

histograms for the number of right predictions (e=0, squares) 

and wrong predictions (e=1, triangles). 

 

2.4. Channel multiplexing 

In the previous sections the “source model” [9], consisting of the 

prediction filter and probability table, has been discussed for one 

channel. In a full encoder, every channel has its own source 

model, whereas only a single arithmetic encoder is used. To 

exploit the correlation between channels, however, it is also 

possible to let channels share prediction filters and/or probability 

tables. Sharing filters or probability tables is profitable when the 

decrease in number of metadata bits, necessary to transfer the 

filter or table information from the encoder to the decoder, is 

higher than the increase in number of arithmetic code bits. The 

latter number will typically be somewhat larger, since it is not 

always possible to construct a prediction filter (or probability 

table) that leads to optimal arithmetic encoding for all channels 

that are using it. 
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Figure 5 Compression ratio for 1000 frames of recording A 

(classical music, 6 channels). 

3. RESULTS 

To illustrate the performance of the algorithm, a few typical 

music excerpts have been selected from commercially available 

recordings, labeled A, B, C, and D. A and B represent a typical 

classical piece of music, excerpt C is a piece of jazz, and D 

represents a typical pop music recording. In Figure 5, for excerpt 

A, the compression ratio η is depicted over a length of 1000 

frames. It can clearly be seen that the compression ratio varies 

significantly over time. Musical events, such as a sudden intense 

percussion, have a significant impact on the compression ratio. 

Typically, during periods of silence, the compression ratio 

increases, whereas during extremely loud passages the 

compression ratio drops. 

 

Table 1 shows the average compression ratios as obtained on 

the full music titles, from which the excerpts have been taken. 

All the tabulated discs comprise a stereo as well as a 6-channel 

Title Description #ch � Achievable 

playing time 

6 2.795 
A

Classical 

music 2 2.777 } 1h 17min 

26s 

6 2.826 
B

Classical 

music 2 2.820 } 1h 18min 

23s 

6 2.728 
C Jazz music 2 2.696 } 1h 15min 

29s 

6 2.688 
D Pop music 2 2.636 } 1h 14min 

14s 

Table 1 Average compression ratio for recordings A – D. 
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program. The maximum possible playing time for a disc 

containing the stereo and multi-channel programs (equal length) 

has been calculated and tabulated in Table 1. It has been 

assumed that the average compression ratio stays constant and 

that the data has to fit on one layer of a Super Audio CD with a 

capacity of 4.7·109 bytes. 

An interesting observation is that, typically, the MC 

part compresses slightly better than the stereo part. In most 

circumstances this is due to the fact that especially the rear 

channels of the MC recording are quieter than the stereo 

channels. As remarked earlier, the compression ratio increases 

slightly for quieter recordings, explaining the higher 

compression ratio for the MC part.  

 The lossless compression algorithm, although initially 

developed for a 64 Fs sampling rate, can be easily extended to 

higher sampling rates for professional use, e.g., 128 Fs and 256 

Fs. In order to achieve the best compression gain for these higher 

rates, the frame length duration is kept constant at 1/75 of a 

second, resulting in frame sizes of double or quadruple the size 

used at 64 Fs. Other parameters, e.g. the maximum prediction 

order or probability table length, stay unchanged.  

 Table 2 lists for three example wideband recordings the 

coding gain. The recordings have been performed at 256 Fs, 

from which downsampled versions at 64 and 128 Fs have been 

constructed. Fragment E is a typical classical recording in stereo. 

Fragment F consists out of 6 channel pop music. Fragment G 

contains a solo intermezzo of a violoncello, recorded using 5 

microphones. From the table it becomes immediately clear that 

the type of music has strong influence on compression gain.  

Higher sampling rates result in higher compression gains. 

However, a clear relationship between the increase in 

compression gain for increasing sampling frequency is absent.  

Recording at a higher sampling rate increases the amount of 

information, which, as expected, in spite of the increase in 

compression gain, increases the amount of required storage. 

 

�Title Description #ch 
64 Fs 128 Fs 256 Fs 

E Classical 

music 

2 2.66 3.03 4.24 

F Pop music 6 2.76 3.05 3.59 

G Classical 

music (solo) 

5 2.98 3.20 3.51 

Table 2 Compression gain for three 64, 128, and 256 Fs 

recordings. 

4. SUMMARY 

We have demonstrated the feasibility of lossless compression for 

one-bit coded signals. The compression algorithm is based on a 

combination of linear prediction and arithmetic encoding. 

Although the encoding algorithm is computationally rather 

demanding, the decoding algorithm is much less so, and can 

easily be implemented using standard ASIC technology. As a 

result of the lossless nature of the compression, the compression 

ratio varies, and is dependent on the program material. Quieter 

material will result in a slightly improved compression, and 

hence a longer maximum playing time. On average, it is possible 

to achieve a playing time of 74 minutes for a disc containing 

both a stereo and multi-channel recording.  

 An extension to the algorithm, to efficiently deal with higher 

sampling rates, has been made. It has been shown, that with a 

minimal change to the algorithm, also higher sampling rates, 

e.g., 128 Fs and 256 Fs, show excellent compression ratios. This 

extension enables the use of higher sampling rates for future 

professional use. As a result, one-bit coding technology 

combines audiophile audio quality with a realistic data-rate 

requirement, offering the best of high-resolution audio, for both 

consumer and professional use. 
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