
A LOSSLESS AUDIO COMPRESSION SCHEME WITH RANDOM ACCESS PROPERTY

Dai Yang1, Takehiro Moriya2, Tilman Liebchen3

1Univ. of Southern California, Dept. of Electrical Engineering, Los Angeles, CA, USA
2NTT Cyber Space Laboratory, Media Processing Project, Musashino, Tokyo, Japan

3Technical University Berlin, Communication Systems Group, Berlin, Germany
daiyang@alumni.usc.edu, moriya.takehiro@lab.ntt.co.jp, liebchen@nue.tu-berlin.de

ABSTRACT

In this paper, we propose an efficient lossless coding algorithm
that not only handles both PCM format data and IEEE floating-
point format data, but also provides end users with random access
property. In the worst-case scenario, where the proposed algo-
rithm was applied to artificially generated full 32-bit floating-point
sound files with 48- or 96-kHz sampling frequencies, an average
compression rate of more than 1.5 and 1.7, respectively, was still
achieved, which is much better than the average compression rate
of less than 1.1 achieved by general purpose lossless coding algo-
rithm gzip. Moreover, input sound files with samples’ magnitude
out-of-range can also be perfectly reconstructed by our algorithm.

1. INTRODUCTION

Current state-of-the-art ”perceptually lossy” forms of audio encod-
ing, such as Dolby AC-3 and the ISO/MPEG audio standards, are
capable of achieving compression ratios up to 12:1 and higher, and
have thus become popular as components of Internet media appli-
cations, mobile terminals, and special-purpose audio-visual data-
storage devices. However, lossy audio-compression algorithms
have met with strong resistance from the fields of professional
studio operations, sound archiving, and the disc-based consumer
market. This is because a lossy compression algorithm, regardless
of how good it is, permanently alters the original recorded sound
data and thus inherently reduces audio quality. In contrast, copies
of an audio waveform reproduced after lossless audio compression
are always bit-by-bit identical to each other, no matter how many
cycles of compression and decompression are applied.

In October 2002, MPEG issued a new call for proposals on
MPEG-4 lossless audio coding [1]. The new standard is now be-
ing developed and will be finalized in a year or two. However,
most of the available lossless audio coding algorithms focus on
audio input sources of PCM format. Little work has been done on
audio sources of IEEE floating point format [2]. As an important
sound format in the audio industry, IEEE floating point sound files
have the ability to store the audio signal much more precisely than
sound files with regular PCM format, and are therefore much more
difficult to compress losslessly.

In our previous work [3], we described a lossless compres-
sion scheme for audio sources with IEEE floating point format. In
that paper, the floating point input file is first converted into reg-
ular PCM data, then the PCM data and the floating point residue
are taken care separately. The core coding module adopted there
to compress the PCM data is Monkey’s Audio [4], which has no
random accessibility at all. Since random access not only gives

the end users more control of the compressed bitstream but also
limit the length of possible error proporgation when transmitting
the bitstream through networks, based on our previous work, we
developed a new lossless audio coding technique that not only han-
dles regular PCM data and floating point data but also provides end
users with random access property. In some circumstances, after
sound files are edited and manipulated, the final data may con-
tain out-of-range samples. By using the proposed algorithm, these
kinds of files can also be perfectly reconstructed.

The rest of this paper is organized as follows. Section 2 de-
scribes the proposed algorithm in detail. Experimental results and
some discussions are provided in section 3. Finally, some conclud-
ing remarks are given in section 4.

2. COMPLETE ALGORITHM DESCRIPTION

2.1. System Overview

Figures 1 and 2 show block diagrams of the encoder and decoder,
respectively. On the encoder side, audio samples are buffered and
processed frame by frame. Each frame is divided into blocks of
samples. Typically there is one block for each channel. Input data
with out-of-range magnitude are normalized before further pro-
cessed. Depending on the input file format, data is sent either
directly into the lossless PCM coding module or floating point
to PCM conversion module. After converting floating point data
to PCM format, the generated PCM data and their corresponding
floating point residue are compressed separately. Thus, for float-
ing point sound file, its bitstream is a combination of compressed
PCM data and floating point residue.

Buffer

Original

Float or
Interger?

Float2Int Int2Float
Condense
Diff Data

Entropy
Coding

Multiplexing

Coefficient
Estimation +
Quantization

Predictor

Entropy
Coding

Dynamic
Range
Control

Normalization info

Float

Integer

Bitstream

Quantized coefficients

Code Indices
Estimate

Integer Residue

Float
Residue

Input sound file format info

float B

float A

Fig. 1. Encoder block diagram.

III - 10160-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡

In March 2003’s MPEG meeting, the lossless PCM coding
module proposed by Technical University of Berlin [5] has been
accepted as one of MPEG-4 lossless audio standard’s first ref-
erence models. Because of its excellent coding performance,
it is adopted in our lossless PCM coding module in this work.
The PCM coding module consists of three major building blocks,
i.e. coefficient estimation and quantization, predictor, and entropy
coding of integer residue. The basic version of the PCM encoder
uses one sample block per channel in each frame. Optionally, each
block can be subdivided into four shorter sub-blocks to adapt to
transient segments of the audio signal. The encoder generates bit-
stream information allowing random access at intervals of several
frames. Furthermore, joint stereo coding can be used to exploit de-
pendencies between the two channels. For each channel, a predic-
tion residual is calculated using linear prediction with adaptive co-
efficients and adaptive prediction order. The coefficients are quan-
tized prior to filtering and transmitted as side information. The
prediction residual is entropy coded using one of several differing
Rice codes. The indices of the chosen codes have to be transmit-
ted.

Demultiplexing
Bitstream

Entropy
Decoding

PredictionCode indices

Integer Residue

Estimate

Quantized coefficients

Normalization info

Sound file format info

Float or
Integer?

Dynamic
Range
Control

Entropy
Decoding

Expanding
Diff Data

Int2FloatFloat

Integer

Float
residue Reconstructed

sound

Fig. 2. Decoder block diagram.

For floating-point input files, their samples need to be first
truncated to integer. The floating-point residue data is generated
byte-wisely by finding the difference between the original normal-
ized floating-point samples A and the truncated integer samples in
floating-point format B. In this way, any possible calculation error
caused by simple floating-point domain subtraction can be avoided
so that perfect reconstruction at the decoder side can always be
guaranteed. After eliminating unnecessary bits, the floating-point
residue data is then packed and entropy coded. A multiplexing unit
finally combines all coded bits from the PCM encoder, floating-
point residue encoder and other side information bits to form the
compressed bitstream. The encoder also provides a CRC check-
sum, which is supplied mainly for the decoder to verify the de-
coded data. On the encoder side, the CRC can be used to ensure
that the compressed file is losslessly decodable.

The decoder is significantly less complex than the encoder. It
first decompress the entropy coded integer residual and then using
the predictor coefficients to calculates the lossless integer signal.
If the original sound file is in floating-point format, the decoder
also needs to decompress the floating-point residue and add them
to the integer part. The normalization information is used at the
end to restore audio data’s original dynamic range.

2.2. Bitstream Structure

The general bitstream structure of a compressed file is shown in
Figure 3. The bitstream consists of a header, compressed infor-
mation of super-frames, any possible non-audio data, and a CRC
checksum field. The header consists of the actual file header, fol-
lowed by the header of the original sound file. Currently, the en-
coder only supports PCM wave files (*.wav) as input files, and the
wave header is directly embedded in the data stream of the com-
pressed file. Each super-frame is a random access unit. The field
”R” appears at the beginning of each random access unit (e.g. each
M frames) and specifies the distance (in bytes) to the next random
access unit. Any prediction related parameters need to be reset at
the boundary of each random access unit. Remaining non-audio
bytes of the wave file are embedded after the last audio frame.
The CRC checksum is stored at the end of the compressed file. If
non random access mode is selected by the users, the compressed
data will be cascaded one frame after the other and put between
the header and non audio data part. In addition, no ”R” field is
necessary at the beginning of each frame data.

R Frame 1 Frame 2 Frame M

Header Superframe 1 Superframe 2 Superframe N CRCNon audio data

File header Wave header

Integer part Float residue part

H_f Compressed floating-point residue data

H_i1 Ch 1.1 Ch 2.1 H_i2 Ch 1.2 Ch 2.2 H_i3 Ch 1.3 Ch 2.3 H_i4 Ch 1.4 Ch 2.4

H_i Channel 1 Channel 2

or

H_i

Prediction data Compressed integer residue data

Fig. 3. Bitstream architecture.

For PCM input files, each frame only contains an integer part.
For floating-point input files, there is a floating-point residue part
following the integer part. The integer part of each frame con-
sists of one or four sample blocks for each channel, where each
block has its own block header ”H”, carrying general information
about the block (e.g. silence block, joint stereo difference block,
etc.). The block itself typically contains the prediction data and the
compressed integer residual values. The floating-point residue part
contains a header and compressed floating-point residue data. The
floating-point part header contains necessary information to de-
code the floating-point residue. The residue data is a compressed
version of the exponent and mantissa difference of each sample.

2.3. Byte-wise Difference

Instead of doing a floating-point subtraction, we generate the dif-
ference between the floating-point samples A and B byte-wisely
so that perfect reconstruction can always be guaranteed. Figure 4
illustrates how the byte-wise difference is taken for one data sam-
ple. In our implementation, there is no need to record the differ-
ence of the sign bit because all sign bits are kept the same after for-
mat conversion. The exponent and mantissa differences, denoted

III - 1017

➡ ➡

IEEE float B e2 f2s2

1 8 23

IEEE float A e1 f1s1
1 8 23

msb lsb msb lsb

msb lsb msb lsb

Diff=A-B D(e)=e1-e2 D(f)=f1-f2
238

msb lsb msb lsb

Fig. 4. Byte-wise difference.

by D(e) and D(f), consist of 8 and 23 bits, respectively. They can
be calculated either by bit-wise XOR or by a simple subtraction.
Each sample’s difference data is stored in a 32-bit format, leaving
one reserved bit for any possible need in the encoding process.

2.4. Format Conversion

How the PCM and floating-point format conversion is handled has
a great influence on the generation of floating-point residue data,
which greatly affects the overall compression performance.

Diff=A-B

16-bit PCM int M=(-1) x 7
s

IEEE float B=(-1) 2 x 7.0
s -15

IEEE float A=(-1) 2 x 7.xxx
s -15

7.0=(111.00...0) =2 x(1. 1100...0)
2

2
2

f2

7.xxx=(111.xx...x) =2 x(1. 11xx...x)
2

2
2

f2

D(e)=e1-e2=0 D(f)=f1-f2= 00 xx...x

2

Generalization: if , then2 < |M| <2
n-1 n

D(f)= 00...0 xx...x
n-1

Fig. 5. An example of the new format conversion.

In most existing wave file format conversion programs,
such as [6], floating-point numbers are rounded up/down to the
nearest integer when IEEE floating-point samples are converted to
PCM format. Doing so minimizes the magnitude of the residue.
However, the sign of each sample’s residue could be positive
or negative. Moreover, exponents of some samples’ residues
could be nonzero, which makes the compression of residue data
inefficient and thus degrades the overall coding performance.
In the proposed compression system, the magnitude of the
floating-point number f is truncated to the largest integer number
that is less than or equal to f , i.e., |f | → �|f |�. When comparing
corresponding floating-point samples in IEEE files A and B,
i.e., fA and fB , the advantages and disadvantages of doing so
over the traditional rounding method can be summarized as below:

Disadvantage:

• The average magnitude of the residue is increased.

Advantages:

• Exponents remain unchanged, unless truncation to zero oc-
curs.

• Signs of non-zero residues are always the same.

• The number of non-zero bits in D(f) can be calculated im-
plicitly.

An example of how to calculate the number of nonzero bits
in D(f) is shown in Figure 5. Suppose that a sample M in
the intermediate PCM file has its magnitude equal to 7. When
converted to IEEE 32-bit floating-point format, it has the form
of (−1)s2−15 × 7.0, where 7.0 has the binary representation
of (111.000...0)2. If the sample M is converted by our new
format conversion method, its corresponding floating-point
sample A should have the form of (−1)s2−15 × 7.xxx...x,
where 7.xxx...x ≥ 7.0 and has the binary representation of
(111.xxx...x)2. When the byte-wise difference is taken, we notice
that the highest two bits in D(f) are zeros. At the decoder side,
given a sample value in the intermediate PCM file, the number
of nonzero bits in D(f) can also be calculated. Therefore, only
those nonzero bits of D(f) need to be sent to the entropy coder
for further processing. On the other hand, if the traditional
format conversion is performed, the number of nonzero bits is not
predictable, and all 23 bits [2] of D(f) need to be passed to the
entropy coder. This simple example can be generalized into the
following rule.

Proposition If a sample in the intermediate PCM file has its mag-
nitude greater than or equal to 2n−1, but smaller than 2n (n > 0),
then the highest n − 1 bits in D(f) should always be zero.

2.5. Handling the Floating-point Residue

For floating-point input files, the total bitstream is the combination
of integer part I and floating-point residue part D, where I is usu-
ally 15% to 30% of the file size of the original 32-bit floating-point
file. Since the intermediate raw residue data is the same size as raw
data in original floating-point file, it is impossible to achieve a sat-
isfying compression result if the residue data are poorly handled.

Using the new format conversion method, most of the sam-
ples’ D(e) equal zero. Therefore, there is no need to send these
D(e) to the bitstream. As for these samples’ corresponding D(f)
values, only those possible nonzero bits need to be buffered and
sent to the entropy coder. When a sample in the original floating-
point file has its magnitude smaller than 2−15, zero truncation
must be done when converting this number into a 16-bit integer.
Thus its corresponding D(e) is nonzero and D(f) may have all
23 nonzero bits.

Our new format conversion method can calculate the number
of highest zero bits of D(f). However, the remaining lower bits
of D(f) may still contain several significant zero bits. One ex-
treme example is when the input floating-point file is a simple for-
mat conversion from a PCM file without any gain factor involved.
In this case, all floating-point residues are zero. In order to im-
prove the performance for input files of this particular kind while
maintaining similar performance for other input files, the highest
nonzero byte or bit in a whole block, Nhigh−block, is calculated
and sent to the bitstream. When compressing D(f), only bits that
are lower than the smaller value of Nhigh−block and Nsample will
be processed, where Nsample is the number of possible nonzero
bits calculated by the new format conversion method for each sam-
ple.

The entropy coder used to compress the compacted floating-
point residue data is the general purpose byte-wised lossless coder
gzip. In order to achieve the best coding performance, a selec-
tion procedure based on the empirical entropy of the residue data

III - 1018

➡ ➡

Table 1. Compression results
Sfreq G/B algorithm RA (ms) Avemaria Clarinet Cymbal Etude Flute Haffner Violin Average

48kHz 1.0/16 ours 500 5.106 4.195 6.772 4.729 4.929 3.616 4.100 4.778
no 5.109 4.197 6.779 4.731 4.932 3.617 4.102 4.781

gzip no 1.774 1.735 2.708 1.730 1.890 1.590 1.789 1.888
2.99/24 ours 500 1.591 1.509 1.478 1.575 1.514 1.499 1.468 1.519

no 1.591 1.509 1.478 1.575 1.514 1.499 1.468 1.519
gzip no 1.083 1.082 1.175 1.081 1.084 1.079 1.081 1.095

96kHz 1.0/16 ours 500 7.155 6.714 8.464 6.636 7.422 5.822 6.441 6.951
no 7.159 6.717 8.470 6.639 7.426 5.825 6.444 6.954

gzip no 1.793 1.749 2.801 1.746 1.907 1.600 1.806 1.915
2.99/24 ours 500 1.762 1.831 1.531 1.757 1.761 1.819 1.757 1.745

no 1.762 1.831 1.531 1.756 1.761 1.817 1.757 1.745
gzip no 1.803 1.803 1.177 1.082 1.085 1.079 1.082 1.096

is enforced, so that either the original or the byte-aligned version
of the compacted floating-point residue data is input into the gzip
encoder. In this way, we experienced a significant performance
improvement when the input floating-point file is a simple format
conversion of a PCM file.

3. EXPERIMENTAL RESULTS

The proposed compression scheme has been implemented and
tested. We evaluated the performance of the proposed algorithm
in the worst-case situation by applying it to IEEE 32-bit floating-
point format audio source files, which were artificially generated
by multiplying PCM sound files by different gain factors. Table 1
shows compression results for two sets of seven input sound files
with sampling frequencies of 48- and 96-kHz, respectively. The
number pair G/B in the second column, e.g. 2.99/24, means the
IEEE floating-point input file is generated by multiplying the 24-
bit PCM file by a gain of 2.99. In this table, we list compression
rates of 500 ms random access mode and that of non random ac-
cess mode. In order to demonstrate the compression efficiency of
the proposed algorithm, we also list the compression rates by us-
ing general purposed lossless compression engine gzip. From the
values in this table, we observe the following points:

• When compared with non random access mode, in most
of cases, random access mode only slightly degrades the
coding performance by inserting the ”R” field and resetting
the prediction parameters.

• The proposed compression scheme has better performance
for input files with a 96-kHz sampling frequency than for
48-kHz ones.

• When compared with gzip, the non random access mode of
the proposed algorithm achieves significantly better results,
especially when the input files are generated with parameter
G/B=1.0/16, which is generally true for any input file that
is a simple floating-point conversion of a PCM file.

4. CONCLUSION

We proposed a new lossless compression scheme with random ac-
cess property for audio data either in the IEEE 32-bit floating-point
format or regular PCM format. The proposed algorithm utilizes an

prediction-based PCM lossless audio coder as a core coder, then
gracefully handles the floating-point residue data to generate the
final bitstream. In the worst case scenario, where the input IEEE
floating-point files are generated by multiplying the 24-bit PCM
file by a non-integer number, the proposed algorithm still achieves
an average compression rate of more than 1.5 and 1.7 for input
files with sampling frequencies of 48- and 96-kHz, respectively.
When the input floating-point file is a simple format conversion of
a PCM file, a compression rate of nearly 5.0 (48-kHz) or 7.0 (96-
kHz) can be achieved. Moreover, input sound files with samples’
magnitude out-of-range can also be perfectly reconstructed by our
algorithm.

5. REFERENCES

[1] ISO/IEC JTC 1/SC29/WG11 N5208, Revised call for pro-
posals on MPEG-4 lossless audio coding, Shanghai, China,
October 2002.

[2] ANSI/IEEE Std. 754-1985 American National Standard,
IEEE Standard for Binary Floating-Point Arithmetic, New
York, 1985.

[3] D. Yang and T. Moriya, “Lossless compression for audio
sources with IEEE floating point format,” AES 115th Con-
vention, October 2003.

[4] Monkey’s Audio, A fast and powerful lossless audio compres-
sor, http://www.monkeysaudio.com.

[5] T. Liebchen, “Mpeg-4 lossless coding for high-definition au-
dio,” AES 115th Convention, October 2003.

[6] P. Kabal, AFsp Library, programs and routines,
http://www.tnt.uni-hannover.de/soft/audio/packages/afsp.

[7] M. Hans and R. W. Schafer, “Lossless compression of digital
audio,” IEEE Signal Processing Magazine, vol. 18, no. 4, pp.
21–32, 2001.

III - 1019

➡ ➠

