<

TIKHONOV REGULARIZATION AND SEMI-SUPERVISED LEARNING ON LARGE
GRAPHS

Mikhail Belkin, Irina Matveeva and Partha Niyogi

University of Chicago, Department of Computer Science

ABSTRACT

We consider the problem of labeling a partially labeled graph.

This setting may arise in a number of situations from sur-
vey sampling to information retrieval to pattern recognition
in manifold settings. It is also of potential practical impor-
tance, especially when data is abundant, but labeling is ex-
pensive or requires human assistance. Our approach devel-
ops a framework for regularization on such graphs parallel
to Tikhonov regularization on continuous spaces. The algo-
rithms are very simple and involve solving a single, usually
sparse, system of linear equations. Using the notion of al-
gorithmic stability, we derive bounds on the generalization
error and relate it to the structural invariants of the graph.

1. INTRODUCTION

We consider the problem of predicting the labels on ver-
tices of a partially labeled graph. Consider a weighted graph
G = (V,E) where V = {x3,... ,x,} is the vertex set and
E is the edge set. Associated with each edge e;; € E is
a weight W;;. If there is no edge present between x; and
x;, Wi; = 0. Imagine a situation where a subset of these
vertices are labeled with values y; € R. We wish to predict
the values of the rest of the vertices. In doing so, we would
like to exploit the structure of the graph. In particular, in
our approach we will assume that the weights are indica-
tions of the affinity of nodes with respect to each other and
consequently are related to the potential similarity of the y
values, these nodes are likely to have. We will propose an
algorithm for regularization on graphs.

This general problem arises in a number of different set-
tings. In survey sampling, one has a database of individuals
along with their preference profiles that determines a graph
structure based on similarity of preferences. One wishes
to estimate a survey variable (e.g. hours of TV watched,
amount of cheese consumed, etc.). Rather than survey the
entire set of individuals every time, which might be imprac-
tical, one may sample a subset of the individuals and then
attempt to infer the survey variable for the rest of the indi-
viduals. In Internet and information retrieval applications,
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one is often in possession of a database of objects that have
a natural graph structure (or more generally affinity matrix).
One may wish to categorize the objects into various classes
but only a few (object, class) pairs may be obtained by ac-
cess to a supervised oracle. In the Finite Element Method
for solving PDEs, one sometimes evaluates the solution at
some of the points of the finite element mesh and one needs
to estimate the value of the solution at all other points. A
final example arises when data is obtained by sampling an
underlying manifold embedded in a high dimensional space.
In recent approaches to dimensionality reduction, cluster-
ing and classification in this setting, a graph approximation
to the underlying manifold is computed. Semi-supervised
learning in this manifold setting reduces to a partially la-
beled classification problem of the graph. This last example
is an instantiation of transductive learning where other ap-
proaches include the Naive Bayes for text classification in
[11], transductive SVM [14, 9], the graph mincut approach
in [3], and the random walk on the adjacency graph in [13].
We also note the closely related work [10], which uses ker-
nels and in particular diffusion kernels on graphs for classi-
fication.

We consider this problem in some generality and intro-
duce a framework for regularization on graphs. Two algo-
rithms are derived within this framework. The resulting
optima have simple analytical expressions. If the graph is
sparse, the algorithms are fast and, in particular, do not re-
quire the computation of multiple eigenvectors as is com-
mon in many spectral methods (including our previous ap-
proach [1]). Another advantage of the current framework
is that we are able to provide theoretical guarantees for the
generalization error. Using techniques from algorithmic sta-
bility we show that generalization error is bounded in terms
of the smallest nontrivial eigenvalue (Fiedler number) of the
graph. Finally some experimental evaluation is conducted
suggesting that this approach to partially labeled classifica-
tion is competitive.

Several groups of researchers have been recently inves-
tigating related ideas. In [16] the authors propose the Label
Propagation algorithm for semi-supervised learning, which
is similar to our Interpolated Regularization when S = L.
In [15] a somewhat different regularizer together with the
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normalized Laplacian is used for semi-supervised learning.
The ideas of spectral clustering motivated the authors of [5]
to introduce Cluster Kernels for semi-supervised learning.
Another related work is [12].

2. TIKHONOV REGULARIZATION ON GRAPHS

2.1. Smoothness Functionals on Graphs

To approximate a function on a graph G, with the weight
matrix I¥;; we need a notion of a “good” function. One way
to think about such a function is that is that it does not make
too many “jumps”. We formalize that notion (also see [1]),
by the smoothness functional S(f) = > W;;(fi — f;)?

inj
where the sum is taken over the adjacent vertices of G. For
“good” functions f the functional S takes small values.

It is important to observe that

S Wifi - £;)? =f£TLf

inj

where L is the Laplacian L = D — W,
D =diag(}_ Wii..., Y Wai)

This is a basic identity in the spectral graph theory and pro-
vides some intuition for the remarkable properties of the
graph Laplacian L.

Other smoothness matrices, such as L, p € N, exp(tL),
t € R are also possible. In particular, L? often seems to
work well in practice.

2.2. Algorithms

Let G = (V, E) be a graph with n vertices and the weight
matrix W;;. For the purposes of this paper we will assume
that G is connected and that the vertices of the graph are
numbered. We would like to regress a function f : V- — R.
f is defined on vertices of G, however we have only partial
information, say, for the first k vertices. That is f(x;) =
yi» 1 < ¢ < k. The labels can potentially be noisy. We
also allow data points to have multiplicities, i.e. each vertex
of the graph may appear more than once with the same or
different y value.

We precondition the data by mean subtracting first. We
take y = (y1 — ¥, .- ,yr — §) where § = £ 3" y;. This is
needed for stability of the algorithms as will be seen in the
theoretical discussion.

Algorithm 1: Tikhonov regularization (parameter v €
R). The objective is to minimize the square loss function
plus the smoothness penalty.

f= argmin — Z(f’ — ;)% +ofLSF

S here is a smoothness matrix, e.g. S = Lor S = LP,
p € N. The condition }_ f; = 0 is needed to make the
algorithm stable. It can be seen by following the proof of
Theorem 1 that necessary stability and the corresponding
generalization bound cannot be obtained unless the regular-
ization problem is constrained to functions with mean 0.

Without the loss of generality we can assume that the
first [ points on the graph are labeled. [ might be different
from the number of sample points &, since we allow vertices
to have different labels (or the same label several times).

The solution to the quadratic problem above is not hard
to obtain by standard linear algebra considerations. If we
denote by 1 = (1,1,..., 1) the vector of all ones, the solu-
tion can be given in the form

f=(kyS+1I;) (¥ +pl)

Here y is the n-vector
Y= (Zyu,Zyzi,-.- ,Zymi,o,... ,0)

where we sum the labels corresponding to the same vertex
on the graph.

I}, is a diagonal matrix of multiplicities
I, = diag (n1,n2,... ,n;,0,...,0)

where n; is the number of occurrences of vertex ¢ among the
labeled point in the sample. p is chosen so that the resulting
vector f is orthogonal to 1. Denote by s(f) the functional

Since s is linear, we obtain 0 = s(f) = s (kS + In)~'y)+
s ((kvS + I;)~'1). Therefore we can write
__5((S+ 107y
s((kyS+I)" ' 1)

Note that dropping the condition f | 1 is equivalent to
putting . = 0.

Algorithm 2: Interpolated Regularization (no param-
eters).

Here we assume that the values y1, . . . , yx have no noise.
Thus the optimization problem is to find a function of max-
imum smoothness satisfying f(x;) = §;, 1 <1 < k:

f= argmin 'St

£=(G1, T Fhg1 o In)

Zfi=0

As before S is a smoothness matrix, e.g. L or L2. However,
here we are not allowing multiple vertices in the sample.

We partition S as
51 S
s=(5 %)
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where S1 is a k x k matrix, Sy is k x n — k and S3 is

(n — k) x (n — k). Let f be the values of f, where the

function is unknown, f = (frt1yee s fn)-
Straightforward linear algebra yields the solution:

f=S1ST(Wis-- -, 9i)" + pl)

_ 5(85'S7y)
~s(S7' ST

The regression formula is very simple and has no free
parameters. However, the quality of the results depends on
whether S5 is well conditioned.

It can be shown that Interpolated Regularization is the
limit case of Tikhonov regularization when -y tends to 0.

3. THEORETICAL ANALYSIS

In this section we investigate some theoretical guarantees
for the generalization error of regularization on graphs. We
use the notion of algorithmic stability, first introduced by
Devroye and Wagner in [7]. We used a theorem of Bousquet
and Elisseeff ([4]) to obtain the bounds.

For the lack of space we omit all proofs. See our Tech-
nical Report ([2]) for the details.

The goal of a learning algorithm is to learn a function
on some space V' from examples. Given a set of examples
T the learning algorithm produces a function fr : V —
R. Therefore a learning rule is a map from data sets into
functions on V. We will be interested in the case where V'
is a graph. The empirical risk Ry, (f) (with the square loss
function) is a measure of how well we do on the training set:

Eod

k
Ri(f) = 7 > _(f(xi) —9i)°

The generalization error R( f) is the expectation of how well
we do on all points, labeled or unlabeled.

R(f) = By (f(x) = y(x))*

where the expectation is taken over an underlying distribu-
tion y on V' x R according to which the labeled examples
are drawn.

As before denote the smallest nontrivial eigenvalue of
the smoothness matrix S by A;. If S is the Laplacian of the
graph, this value, first introduced by Fiedler in [8] as alge-
braic connectivity and is sometimes known as the Fiedler
constant, plays a key role in spectral graph theory.

Theorem 1 (Generalization Performance of Graph Reg-
ularization). Ler vy be the regularization parameter, T be
a set of k > 4 vertices x1, ... , Xy, where each vertex oc-
curs no more than t times, together with values y1, . . . , Yk,
lyil| < M. Let fr be the regularization solution using the

smoothness functional S with the second smallest eigen-
value \1. Assuming that Vx|fr(x)| < K we have with
probability 1 — § (conditional on the multiplicity being no
greater than t):

Be(fr) RO < B4 282D (g 4 1 4 ary)
where
3MVtk 4M
P = o =12 T =1

We do not discuss the issue of multiplicity here but note
that in many situations ¢ can be taken to be one. We see
that the generalization error it decreases at a rate Lk Itis
important to note that the estimate is nearly independent of
the total number of vertices n in the graph. We say “nearly”
since the probability of having multiple points increases as
k becomes close to n and since the value of A; may (or may
not) implicitly depend on the number of vertices.

The only thing that is missing is an estimate for . Be-
low we give two such estimates, one for the case of general
S and the second when the smoothness matrix is the Lapla-
cian L.

Proposition 2. With Ay, K, M and vy as above we have the
following inequality:

k<M

ﬁ
[
2

A different, possibly sharper inequality can be obtained
when S = L. Note the the diameter of the graph is typi-
cally far smaller than the number of vertices. For example,
when @ is a n-cube, the number of vertices is 2", while the
diameter is n.

Proposition 3. Let W = min;~ ; w;; be the smallest nonzero
weight of the graph G. Assume G is connected. Let D be the
unweighted diameter of the graph, i.e. the maximum length
of the shortest path between two points on the graph. Then
the maximum entry K of the solution to the y-regularization
problem with y’s bounded by M satisfies the following in-

equality:
| D
K< Ml —
< W

A useful special case is

Corollary 4. If all weights of G are either O or 1, then

k<2
v
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Fig. 1. Classification error for regularization, interpo-
lated regularization compared to the Support Vector Ma-
chine (SVM) and the Transductive Support Vector Machine
(TSVM) for different numbers of labeled points.

4. EXPERIMENTS

As an example, we compare the performance of regular-
ization and interpolated regularization on the Ionosphere
dataset from the UC Irvine Machine Learning Repository.
The parameter «y for the regularization algorithm is deter-
mined using the leave-one-out cross-validation. We con-

struct the graphs using 7 nearest neighbors and binary weights.
Because of the space constraints, we do not show results of

other experiments but note that the performance is generally
competitive.

5. CONCLUSIONS

In a number of different settings, there is a need to fill in
the labels (values) of a partially labeled graph. We have
provided a principled framework for Tikhonov regulariza-
tion on such graphs. The algorithms proposed are simple
and require solving a single, usually sparse, system of lin-
ear equations.

It is important to note that if the graph arises from the
local connectivity of data obtained from sampling an under-
lying manifold, then our approach has natural connection to
regularization on that manifold.
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