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ABSTRACT

We extend the wavelet transform to handle multidimensional sig-
nals that are smooth save for singularities along lower-dimensional
manifolds. We first generalize the complex wavelet transform
to higher dimensions using a multidimensional Hilbert transform.
Then, using the resulting hypercomplex wavelet transform (HWT)
as a building block, we construct new classes of nearly shift-
invariant wavelet frames that are oriented along lower-dimensional
subspaces. The HWT can be computed efficiently using a 1-D
dual-tree complex wavelet transform along each signal axis. We
demonstrate how the HWT can be used for fast line detection in
3-D.

1. INTRODUCTION

The multiscale analysis of the discrete wavelet transform (DWT)
has proved natural and powerful for dealing with singularity-rich
one-dimensional (1-D) signals. In contrast to the sinusoidal basis
functions underlying Fourier analysis, wavelet basis functions are
localized in both time and frequency and thus yield very sparse
and structured representations of piecewise smooth signals (signals
that are smooth except for a finite number of jump discontinuities).
This sparsity and structure boost the performance of algorithms
such as denoising by shrinkage [1] and compression [2].

In this paper, we study how to best extend wavelet representa-
tions to handle piecewise smooth multidimensional signals (2-D,
3-D, and beyond). Such signals are smooth almost everywhere
over their n-D domain but feature singularities on manifold struc-
tures of lower dimension m < n.! For example, an edge discon-
tinuity in a 2-D image lies along a 1-D curve; a bee or aircraft
flying through 3-D space tracks out a smooth 1-D curve in 4-D
space-time; a video of a smooth object moving smoothly in time
lies on a 2-D manifold in 3-D space-time; and points in space can
be viewed as lying on 0-D manifolds in 3-D space.

Two fundamental problems have hindered the application of
wavelets to multidimensional piecewise smooth signals. First,
manifold singularities have a preferred orientation: they are
smooth in the “direction” of the manifold (along the m-D tangent
space) and contain a singularity (rapid change) in the “direction”
of the normal (along the (7 — m)-D normal space). Thus, to adapt
basis functions for these local features, wavelets intersecting the
manifold should be smooth (lowpass) in the direction of the mani-
fold and oscillatory (bandpass) in the direction of the normal. Un-
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fortunately, standard separable wavelets constructed from tensor
products of 1-D wavelets have poor orientation selectivity. In 2-
D, for example, one of the three tensor wavelets is simultaneously
oscillatory at both +45° and —45° in the image plane. Figure
1(a) illustrates that the situation is even more grim in 3-D; this
tensor wavelet is simultaneously oscillatory along the 4 diagonal
directions within the cube. In general, tensor wavelets are only
appropriate for representing 0-D structures (points) in n-D space.

Second, unlike the complex Fourier representation, the stan-
dard real-valued wavelet transform in any dimension is highly shift
varying, meaning that a small shift in the signal drastically changes
the values of the wavelet coefficients. This complicates wavelet
coefficient modeling and processing considerably.

Recently, a promising approach for generating directional
wavelets has emerged via the complex wavelet transform (CWT)
[4, 5, 6]. Kingsbury’s 1-D dual-tree CWT expansion employs two
independent wavelet filterbanks corresponding to a “real” wavelet
and an “imaginary” wavelet that form an approximate Hilbert
transform pair [5]. The resulting 2x redundant tight frame en-
ables a magnitude/phase coherent representation akin to that of
Fourier analysis. Moreover, in 2-D a clever combination of the
independent 1-D CWT filterbanks creates a directional set of six
complex wavelets oriented at multiples of 30°; these wavelets are
very natural for representing 1-D edge structure in images [7]. As
an added bonus, the smooth magnitude envelope of the complex
wavelet yields a nearly shift-invariant transform.

In [6], Selesnick and Li extended this 2-D construction to a
3-D CWT that is natural for studying video sequences and other
data with (n = 3, m = 2). As we see in Fig. 1(b), each 3-D CWT
wavelet oscillates along a 1-D line (its orientation) and is smooth
in the orthogonal 2-D plane. Extended further to n-D, Selesnick
and Li’s CWT is natural for representing signals always lying on
m = n — 1 dimensional manifolds.

But what about signals with singularities on m < n—1 dimen-
sional manifolds (the 1-D trajectory of a bee in 3-D, for example)?
In this paper, we develop a general theory for directional wavelets
that are matched to any signal dimension n and manifold dimen-
sion m < n. We take a two-step approach. First, we introduce a
new hypercomplex wavelet transform (HWT) that generalizes the
CWT via an analogy to the hypercomplex Fourier transform and
its associated generalized n-D Hilbert transform [8]. The HWT
is conveniently obtained by a simple non-separable combination
of 1-D dual-tree CWTs. Second, we show that the HWT serves
as a basic building block for generating new classes of directional
hypercomplex wavelet transforms (DHWTs) for handling different
manifold dimensions m; we merely form a simple linear combina-
tions of the HWT components (orthogonal projections) to obtain
each new directional transform. As an added bonus, the magnitude
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Fig. 1. Isosurfaces (points taking the same function value) of wavelet bases in 3-d space (n = 3). Red is large positive; blue is large
negative. (a) Standard DWT tensor-product wavelet lacks any strong directionality; (b) m = 2 DHWT wavelet (real part) is bandpass along
a 1-D line and lowpass along the orthogonal 2-D plane [6]; (c) m = 1 DHWT wavelet (real part) is bandpass on a 2-D plane and lowpass

on the orthogonal 1-D line.

(b)

Fig. 2. Fourier-domain support of the 3-D wavelets from Fig. 1 (n = 3). Part (a) also represents the Fourier support of the corresponding

HWT wavelet.

envelopes of the HWT and DHWT wavelets are smooth bumps,
which makes the transforms nearly shift-invariant.

For different choices of n and m the HWT corresponds to
some interesting known and new wavelets, including dual-tree
complex wavelets (n = 1) [6], new quaternion wavelets (n = 2),
new octonion wavelets (n = 3), and so on. In 3-D, octonion
wavelets are the basic building blocks for constructing both Se-
lesnick and Li’s CWT for m = 2 (see Fig.1(b)) and a new DHWT
for m = 1 (see Fig.1(c)).

This paper is organized as follows. In Sections 2 and 3 we
briefly review the DWT and CWT. Section 4 introduces the HWT
and Section 5 develops the idea of orthogonal projections to ob-
tain DHWTSs and presents a simple line detection example in 3-D.
Section 6 suggests possible directions for future research. In the
following, we will mainly focus on the cases n = 2 and n = 3 for
clarity; however, all results generalize to arbitrary n and m.

2. DISCRETE WAVELET TRANSFORM (DWT)

The discrete wavelet transform (DWT) represents a 1-D real signal
f(t) in terms of shifted versions of a scaling function ¢(t) and
shifted and scaled versions of a wavelet function 1(t) [2]. When
br.p(t) = 25p(25t — p) and 9, 5 (t) = 2°4p(2%t — p) form an
orthonormal basis, we can represent any f(t) € Lo as

FO) = D crpbrpt)+ Y depthep(t) (1)

PEL £>L,pEZ

where cr,, = [ f(t)prp(t)dt and dep = [ f(t)the,p(t)dt are
the scaling and wavelet coefficients. L sets the coarsest scale space
that is spanned by ¢r ,(t). Behind each wavelet transform is a
filterbank based on a lowpass filter; we will use the notation ¢4 (t),
1r(t) to denote the scaling and wavelet functions corresponding
to a particular filter h.

DWTs in higher dimensions are typically obtained using ten-
sor products of 1-D DWTs over each dimension. In 2-D, for ex-
ample, we use the scaling function ¢(x)¢(y) and three wavelets

P(x)Y(y), p(x)Y(y), and ¥ (z)p(y) that are oriented in the diag-
onal, horizontal, and vertical directions, respectively [6].

3. COMPLEX WAVELET TRANSFORM (CWT)

The 1-D dual-tree CWT expands a real signal in terms of two sets
of wavelets and scaling functions obtained from two independent
filterbanks based on real filters & and g [5, 6]. ¥n(t) and )4 (t)
play the roles of the real and imaginary parts of a complex analytic
wavelet ¥°(t) = 1r () + g (t) that is supported only on positive
frequencies in the Fourier domain. Equivalently, the imaginary
wavelet is the Hilbert transform of the real wavelet. The combined
system is a 2x redundant frame that, by virtue of the fact that
[4°(t)] is a smooth bump, is shift-invariant.?

It is useful to recall that the Fourier transforms of the Hilbert
pair of wavelets are related by ¥4(f) = —jsgn(f)¥r(f), where
sgn(f) equals 1 when f > 0 and —1 when f < 0. Thus, summing
Uh(f)+j¥y(f) = T°(f) cancels the negative frequency part of
the complex wavelet, rendering it analytic.

This notion of using 1-D Hilbert transforms to cancel out neg-
ative frequencies has been used to create directional wavelets in 2-
D [5], 3-D, and beyond [6]. However, as we will see, these CWTs
are matched only to manifolds of intrinsic dimension m = n — 1.
To best analyze manifolds of lower intrinsic dimension, we must
turn to the theory of multidimensional Hilbert transforms.

4. HYPERCOMPLEX WAVELET TRANSFORM (HWT)

There are no unique definitions of Hilbert transform and analytic
signal in 2-D and higher. To illustrate two possibilities, consider a
2-D wavelet Fourier transform ¥ ( ., f,). The straightforward ex-
tension of the 1-D definition sets ¥( fz, fy) = 0 on all but a half-
plane (f. > 0, for example) and uses standard complex algebra
for manipulation. Another natural definition sets ¥(f., fy) = 0
on all but a quadrant (fz, fy > 0, for example) and uses quater-
nion algebra for manipulation [9].

2In practice, in order to have finite-length wavelets, the Hilbert trans-
form is only approximately satisfied, 1¢(¢) is only approximately analytic,
and the CWT is only approximately shift-invariant [5, 6].

3The set of quaternions Hl = {a + j1b + jac + jsd|a, b, c,d € R}
with multiplication rules j1j2 = —j2j1 = js and 52 = j2 = —1[10].

I - 997



+1 +1 + -j
+1 +1 + -
@ Un(fe)¥r(fy) () ¥g(fo)¥nr(fy)
=i =i +1 -1
+ +j -1 +1
(©) \IIh(fm)\I’g(fy) (d \Pg(fm)\pg(fy)

Fig. 3. Fourier-domain relationships among the four components
of a 2-D HWT wavelet ¥ ( f., f,) in the diagonal subband.

Adopting the latter rather than the former definition, we will
now introduce a new multiscale signal representation: the dual-
tree hypercomplex wavelet transform (HWT). For clarity, we will
stick to 2-D, but the HWT extends easily to any dimension 7.

Each 2-D hypercomplex wavelet consists of a standard DWT
tensor wavelet plus three additional real wavelets obtained from
the three combinations of 1-D Hilbert transforms along the two co-
ordinates. More specifically, denote the 1-D Hilbert transform op-
erators along the x and y coordinates as H, and H,, respectively.
Then given the diagonal tensor product wavelet 15 (z)vr (y) from
Section 2, we complement it with

Ha{pn (2)Yn(y)} Vg (2)Yn(y), (@)
Hy{n(@)Yr(¥)} = ¢n(e)de(y), (©)
HyHa{n(@)Yr(¥)} = %(@)g(y)- 4)

Conveniently, each component can be computed as a combina-
tion of 1-D dual-tree complex wavelets. These three components
closely resemble 15 (x)1n (y) but are phase-shifted by 90° in the
horizontal, vertical, and diagonal directions, respectively; Fig. 3
interprets these relationships in the Fourier domain. Using quater-
nion algebra, we can compactly summarize the above process in a
quaternion wavelet % (z, ) = vn ()ton () — G113, (@) () —
Jon())g (y) + Jathg(x)1he(y). The construction of the other
two quaternion wavelets based on ¢ (x)1)r (y) and ¥n (z)dr(y) is
identical. The resulting HWT, which we term the dual-tree quater-
nion wavelet transform (QWT) in this special 2-D case, is a 4x
redundant tight frame.

Generalization to 3-D and higher is straightforward. In n-D
there are 2" — 1 different hypercomplex wavelets. Each wavelet
consists of a standard DWT tensor wavelet plus 2" — 1 additional
real wavelets obtained from the 2™ —1 combinations of 1-D Hilbert
transforms along the n coordinates. The total redundancy is 2™ x.

Since we construct the HWT basis by Hilbert transforming a
standard DWT basis, the HWT basis has no better directional se-
lectivity than the DWT basis. However, just as the 1-D Hilbert
transform enables us to zero-out the negative frequency axis to
form an analytic signal, the n-D hypercomplex Hilbert transform
allows us to zero-out all but one “n-tant” * in the Fourier domain.
For example, to obtain a single diagonally oriented 2-D wavelet
whose frequency support is focused in the second quadrant of
the Fourier plane, we combine the four quaternion components as

(r(@)Pn(y) + Pg(€)8g(y)) + 5 (P (2) e (y) — Yg(2)Pn(y))-

4The natural n-D generalization of a quadrant in 2-D and octant in 3-D.

+1 —j

+1 +j

(@) F (Re(y*(z,v))) (b) & (Im(¢°(x, y)))
Fig. 4. Fourier-domain relationships between the real and imagi-
nary parts of a 2-D diagonally oriented complex wavelet. % (-) is
the Fourier Transform.
(See Fig. 3, and also note that this is an orthogonal projection.)
This capability will prove extremely useful for constructing direc-
tional wavelets in the next section.

5. DIRECTIONAL HWT (DHWT)

The HWT provides a convenient set of building blocks for con-
structing new directional wavelet transforms. The idea is simple:
we can generate a new wavelet with localized Fourier support, and
hence directionality [6], by carefully recombining the 2" compo-
nents of an n-D HWT wavelet. The idea is also powerful: with
the HWT we can generate n-D wavelets that are bandpass in sub-
spaces of arbitrary dimension m.

5.1. DHWT in 2-D

We illustrate the procedure by first re-deriving the 2-D CWT of
[5, 6] from the QWT of last section. The Fourier-domain sup-
port of each 2-D QWT wavelet consists of four dyadic squares
symmetrically placed with respect to the origin. This limits its di-
rectionality. For example, the Fourier support of the diagonally
oriented QWT wavelet lies at the four corners of a square in the
Fourier plane (see Fig. 3(a)); hence this wavelet is localized si-
multaneously along two lines of slope +45°. To obtain a wavelet
directed along a single line (at either +45° or —45°) we need to
partition the Fourier plane in half to isolate pairs of squares that
lie on a straight line through the origin. Since we can isolate indi-
vidual quadrants by recombining the QWT components (recall the
end of the Section 4), we can generate a wavelet with two-quadrant
Fourier support as in Fig. 4(a). In the signal domain, this wavelet
will be lowpass along the +45° direction and bandpass along the
orthogonal —45° direction [3, 6].

Repeating the same procedure for all three QWT wavelets with
two directions per subband, we obtain six directional basis func-
tions, each of which is a complex analytic signal. This is precisely
the 2-D CWT [5, 6]. Since the basis functions are analytic, the
CWT is shift-invariant.

5.2. DHWT in 3-D

The 3-D case is more interesting because there exist two entirely
different DHWTSs corresponding to m = 1, 2, and one is new. Let
us focus on the “diagonal” HWT wavelet whose Fourier support
is located in the eight corner cubes in 3-D Fourier space (see Fig.
2(a)). This dual-tree HWT basis function has eight octonion com-
ponents:

z),

Y11 = Pa(@)Yr(W)Yr(2), 2,1 = e ()the(y)the(
Y12 = g (@) Pg (Y)Yr(2), V2,0 = Yn(@)Pn(y)e(2),
V1,8 = Pu(2)Pg(Y)he(2), 2,3 = g (@)hn(y)¥n(2),
V14 = Pg(B)Yn(Y)he(2), 2,4 = Yr(@)he(Y)Pn(2). (5)
As in 2-D, we can linearly combine these eight components to

obtain a wavelet with spectral support in a single octant. We now
have two choices, depending on whether m =1 or 2.
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Case m = 2: To form each DHWT wavelet, we group a pair of
cubes located on a 1-D line running through the origin (see Fig.
2(b)). The resulting wavelet is complex and bandpass along the
1-D line® and lowpass in the orthogonal direction, which is a 2-D
plane through the origin (see Fig. 1(b)).

This idea coincides with the 3-D CWT of Selesnick and Li

[6]. In each subband (in Fig. 1(a), for example), there are 4 ways
to choose pairs of cubes. The resulting wavelets tq, 1s, ¥c, g are
obtained by combining the ¥1,x, k = 1,2, ..., 4, from (5) with or-
thonormal sum/difference operations (see the details in [6]).° Their
complex counterparts can be obtained by similar orthonormal op-
erations on Y2k, k =1,2,...,4.
Case m = 1: Alternatively, we group sets of four cubes located
on a 2-D plane passing through the origin (see Fig. 2(c)). The
resulting wavelet is bandpass along the 2-D plane and lowpass in
the orthogonal direction, which is a 1-D line through the origin
(see Fig. 1(c)).

To obtain these wavelets, we perform orthonormal
sum/difference operations on all pairs of m = 2 DHWT
wavelets in the same subband, for example, %(1/),1 + ). In

terms of the octonion components, we form %(1/)1,1 — P1,2),

%(1#1,3 +11,4), %(1#2,1 —1h2,2), and %(1&2,3 +1)2,4) (a total
of 4 components). These wavelets behave as a quaternion in the
direction parallel to a 2-D plane. This yields a smooth magnitude
envelope and shift-invariant transform. A similar recipe works for
the other directions.

Starting from the HWT wavelet in Fig. 1(a), there are six ways
to group four corner cubes on 2-D planes through the origin. This
result holds for each of the seven HWT wavelet subbands. Since
each m = 1 DHWT basis has 4 components (as a quaternion),
the transform is 24 x redundant (3x the redundancy of the m = 2
DHWT).

The same construction applies for arbitrary n and m.

5.3. Line detection/estimation experiment

In 3-D, the m = 1 DHWT provides an efficient feature space for
the detection and estimation of line singularities. Generalizing the
2-D CWT edge estimator from [7], we use the 18 DHWT coef-
ficients (3 sets of 6 directions, £15°, +45°, +75°, along each of
the 3 faces of a dyadic cube) to estimate the line direction informa-
tion in 3-D (see Fig. 1(a)). The test signal is a 3-D line of radius
1. For various orientation parameters o and 3 as shown in Fig.
5(a) we plot the variation of the magnitudes of 3 DHWT coeffi-
cients in Fig. 5(b). When the line is oriented along the direction of
a DHWT wavelet, the corresponding coefficient peaks to approx-
imately maximum magnitude, providing an efficient line detector.
Interpolation between the DHWT magnitudes in the neighborhood
of the peak value provides an accurate line parameter estimator, as
in [7]. The resulting multiscale detector/estimator has linear com-
putational complexity, in sharp contrast to the Hough transform
algorithms [11].

6. CONCLUSIONS

We have introduced a new family of multiscale signal represen-
tations for multidimensional signal processing, the directional hy-

SDue to the rotation property of the Fourier transform, the wavelet will
actually be bandpass along a 1-D line in the space domain that is rotated
90° with respect to the Fourier-domain line.

%Qrthonormal operations are a necessary condition for the result to form
a tight frame.
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Fig. 5. (a) Angle parameters (, 3) for the line detection experi-
ment. (b) Magnitudes of 3 DHWT coefficients with wavelet orien-
tations indicated by arrows in (a) as a function of 3-D line orien-
tation (a,3). Maximum DHWT magnitudes observed at 3 = 0°
and a = 15°,45°,75°.

percomplex wavelet transforms. DHWTs are especially designed
for signals with a local manifold structure, precisely where stan-
dard tensor product wavelets have often disappointed, thus making
the DHWT a promising tool for multiscale data analysis. A ma-
jor challenge to the DHWT and the CWT is their redundancy, since
multidimensional data processing problems are already often com-
putationally challenging. Certainly controlling their redundancy
while preserving directionality is a fertile area for future research.
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